Advertisement
American Journal of Kidney Diseases

Association of PKD2 (Polycystin 2) Mutations With Left-Right Laterality Defects

      Mutations in the PKD1 (polycystin 1) and PKD2 (polycystin 2) genes cause autosomal dominant polycystic kidney disease (ADPKD). Most Pkd2-null mouse embryos present with left-right laterality defects. For the first time, we report the association of ADPKD resulting from a mutation in PKD2 and left-right asymmetry defects. PKD1 and PKD2 were screened for mutations or large genomic rearrangements in 3 unrelated patients with ADPKD presenting with laterality defects: dextrocardia in one and situs inversus totalis in 2 others. A large gene deletion, a single-exon duplication, and an in-frame duplication respectively, were found in the 3 patients. These polymorphisms were found in all tested relatives with ADPKD, but were absent in unaffected related individuals. No left-right anomalies were found in other members of the 3 families. A possible association between heterotaxia and a PKD2 mutation in our 3 patients is suggested by: (1) the existence of laterality defects in Pkd2-null mouse and zebrafish models and (2) detection of a pathogenic PKD2 mutation in the 3 probands, although PKD2 mutations account for only 15% of ADPKD families. The presence of left-right laterality defects should be systematically screened in larger cohorts of patients with ADPKD harboring PKD2 mutations.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grantham J.J.
        Clinical practice.
        N Engl J Med. 2008; 359: 1477-1485
        • Pirson Y.
        • Chauveau D.
        • Devuyst O.
        Autosomal-dominant polycystic kidney disease.
        in: Davison A.M. 3rd ed. Oxford Textbook of Clinical Nephrology. Vol 3. Oxford University Press, New York, NY2005: 2304-2321
        • Pirson Y.
        Extrarenal manifestations of autosomal dominant polycystic disease.
        Adv Chronic Kidney Dis. 2010; 17: 173-180
        • Rossetti S.
        • Consugar M.B.
        • Chapman A.B.
        • et al.
        Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease.
        J Am Soc Nephrol. 2007; 18: 2143-2160
        • Torres V.E.
        • Harris P.C.
        • Pirson Y.
        Autosomal dominant polycystic kidney disease.
        Lancet. 2007; 369: 1287-1301
        • Schottenfeld J.
        • Sullivan-Brown J.
        • Burdine R.D.
        Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw.
        Development. 2007; 134: 1605-1615
        • Bisgrove B.W.
        • Snarr B.S.
        • Emrazian A.
        • Yost H.J.
        Polaris and polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis.
        Dev Biol. 2005; 287: 274-288
        • Obara T.
        • Mangos S.
        • Liu Y.
        • et al.
        Polycystin-2 immunolocalization and function in zebrafish.
        J Am Soc Nephrol. 2006; 17: 2706-2718
        • Pennekamp P.
        • Karcher C.
        • Fischer A.
        • et al.
        The ion channel polycystin-2 is required for left-right axis determination in mice.
        Curr Biol. 2002; 12: 938-943
        • McGrath J.
        • Somlo S.
        • Makova S.
        • Tian X.
        • Brueckner M.
        Two populations of node monocilia initiate left-right asymmetry in the mouse.
        Cell. 2003; 114: 61-73
        • Otto E.A.
        • Schermer B.
        • Obara T.
        • et al.
        Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination.
        Nat Genet. 2003; 34: 413-420
        • Baala L.
        • Audollent S.
        • Martinovic J.
        • et al.
        Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome.
        Am J Hum Genet. 2007; 81: 170-179
        • Bellavia S.
        • Dahan K.
        • Terryn S.
        • Cosyns J.P.
        • Devuyst O.
        • Pirson Y.
        A homozygous mutation in INVS causing juvenile nephronophthisis with abnormal reactivity of the Wnt/beta-catenin pathway.
        Nephrol Dial Transplant. 2010; 25: 4097-4102
        • Bergmann C.
        • Fliegauf M.
        • Brüchle N.O.
        • et al.
        Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia.
        Am J Hum Genet. 2008; 82: 959-970
        • Pei Y.
        • Obaji J.
        • Dupuis A.
        • et al.
        Unified criteria for ultrasonographic diagnosis of ADPKD.
        J Am Soc Nephrol. 2009; 20: 205-212
        • Levey A.S.
        • Bosch J.P.
        • Breyer Lewis J.
        • Greene T.
        • Rogers N.
        • Roth D.
        A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.
        Ann Intern Med. 1999; 130: 461-470
        • Sutherland M.J.
        • Ware S.M.
        Disorders of left-right asymmetry: heterotaxy and situs inversus.
        Am J Med Genet. 2009; 151C: 307-317
        • Afzelius B.
        • Mossberg B.
        The metabolic and molecular basis of inherited disease.
        in: Scriver C. Beaudet A. Sly W. Valle D. Immotile-Cilia Syndrome (primary ciliary dyskinesia), Including Kartagener Syndrome. McGraw-Hill, New York, NY1995: 3943-3954
        • Tallroth K.
        • Lohman M.
        • Heliövaara M.
        • Aromaa A.
        • Knekt P.
        • Standertskjöld-Nordenstam C.G.
        Dextrocardia and coronal alignment of thoracic curve: a population study.
        Eur Spine J. 2009; 18: 1941-1945
        • Castleman V.H.
        • Romio L.
        • Chodhari R.
        • et al.
        Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities.
        Am J Hum Genet. 2009; 84: 197-209
        • MacLean K.
        • Dunwoodie S.L.
        Breaking symmetry: a clinical overview of left-right patterning.
        Clin Genet. 2004; 65: 441-457
        • Stern C.D.
        Embryology: fluid flow and broken symmetry.
        Nature. 2002; 418: 29-30
        • Hirokawa N.
        • Tanaka Y.
        • Okada Y.
        • Takeda S.
        Nodal flow and the generation of left-right asymmetry.
        Cell. 2006; 125: 33-45
        • Karcher C.
        • Fischer A.
        • Schweickert A.
        • et al.
        Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia.
        Differentiation. 2005; 73: 425-432
        • Noone P.G.
        • Bali D.
        • Carson J.L.
        • et al.
        Discordant organ laterality in monozygotic twins with primary ciliary dyskinesia.
        Am J Med Genet. 1999; 82: 155-160
        • Wu G.
        • D'Agati V.
        • Cai Y.
        • et al.
        Somatic inactivation of Pkd2 results in polycystic kidney disease.
        Cell. 1998; 93: 177-188