American Journal of Kidney Diseases

Rationale of Mesenchymal Stem Cell Therapy in Kidney Injury

  • Vincenzo Cantaluppi
    Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
    Search for articles by this author
  • Luigi Biancone
    Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
    Search for articles by this author
  • Alessandro Quercia
    Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
    Search for articles by this author
  • Maria Chiara Deregibus
    Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
    Search for articles by this author
  • Giuseppe Segoloni
    Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
    Search for articles by this author
  • Giovanni Camussi
    Address correspondence to Giovanni Camussi, MD, Cattedra di Nefrologia, Dipartimento di Medicina Interna, Ospedale Maggiore S. Giovanni Battista “Molinette”, Corso Dogliotti 14, 10126, Torino, Italy
    Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
    Search for articles by this author
Published:August 31, 2012DOI:
      Numerous preclinical and clinical studies suggest that mesenchymal stem cells, also known as multipotent mesenchymal stromal cells (MSCs), may improve pathologic conditions involving different organs. These beneficial effects initially were ascribed to the differentiation of MSCs into organ parenchymal cells. However, at least in the kidney, this is a very rare event and the kidney-protective effects of MSCs have been attributed mainly to paracrine mechanisms. MSCs release a number of trophic, anti-inflammatory, and immune-modulatory factors that may limit kidney injury and favor recovery. In this article, we provide an overview of the biologic activities of MSCs that may be relevant for the treatment of kidney injury in the context of a case vignette concerning a patient at high immunologic risk who underwent a second kidney transplantation followed by the development of ischemia-reperfusion injury and acute allograft rejection. We discuss the possible beneficial effect of MSC treatment in the light of preclinical and clinical data supporting the regenerative and immunomodulatory potential of MSCs.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bonventre J.V.
        • Yang L.
        Cellular pathophysiology of ischemic acute kidney injury.
        J Clin Invest. 2011; 121: 4210-4221
        • Schröppel B.
        • Heeger P.S.
        Gazing into a crystal ball to predict kidney transplant outcome.
        J Clin Invest. 2010; 120: 1803-1806
        • Cecka J.M.
        The UNOS Scientific Renal Transplant Registry—ten years of kidney transplants.
        Clin Transpl. 1997; : 1-14
        • Yarlagadda S.G.
        • Coca S.G.
        • Formica Jr, R.N.
        • Poggio E.D.
        • Parikh C.R.
        Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis.
        Nephrol Dial Transplant. 2009; 24: 1039-1047
        • Perico N.
        • Cattaneo D.
        • Sayegh M.H.
        • Remuzzi G.
        Delayed graft function in kidney transplantation.
        Lancet. 2004; 364: 1814-1827
        • Nankivell B.J.
        • Alexander S.I.
        Rejection of the kidney allograft.
        N Engl J Med. 2010; 363: 1451-1462
        • Halloran P.F.
        T-Cell mediated rejection of kidney transplants: a personal viewpoint.
        Am J Transplant. 2010; 10: 1126-1134
        • Mauiyyedi S.
        • Colvin R.B.
        Humoral rejection in kidney transplantation: new concepts in diagnosis and treatment.
        Curr Opin Nephrol Hypertens. 2002; 11: 609-618
        • Halloran P.F.
        • Wadgymar A.
        • Ritchie S.
        • Falk J.
        • Solez K.
        • Srinivasa N.S.
        The significance of the anti-class I antibody response.
        Transplantation. 1990; 49: 85-91
        • Colvin R.B.
        • Hirohashi T.
        • Farris A.B.
        • Minnei F.
        • Collins A.B.
        • Smith R.N.
        Emerging role of B cells in chronic allograft dysfunction.
        Kidney Int Suppl. 2010; 119: S13-S17
        • Pino C.J.
        • Humes H.D.
        Stem cell technology for the treatment of acute and chronic renal failure.
        Transl Res. 2010; 156: 161-168
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells.
        Cytotherapy. 2006; 8: 315-317
        • Gnecchi M.
        • He H.
        • Liang O.D.
        • et al.
        Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells.
        Nat Med. 2005; 11: 367-368
        • Moore J.
        • Shabir S.
        • Chand S.
        • et al.
        Assessing and comparing rival definitions of delayed renal allograft function for predicting subsequent graft failure.
        Transplantation. 2010; 90: 1113-1116
        • Tong A.
        • Chapman J.R.
        • Wong G.
        • De Bruijn J.
        • Craig J.C.
        Screening and follow-up of living kidney donors: a systematic review of clinical practice guidelines.
        Transplantation. 2011; 92: 962-972
        • Kosieradzki M.
        • Rowiński W.
        Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention.
        Transplant Proc. 2008; 40: 3279-3288
        • Shoskes D.A.
        • Halloran P.F.
        Delayed graft function in renal transplantation: etiology, management and long-term significance.
        J Urol. 1996; 155: 1831-1840
        • Nicholson M.L.
        • Wheatley T.J.
        • Horsburgh T.
        • Edwards C.M.
        • Veitch P.S.
        • Bell P.R.
        The relative influence of delayed graft function and acute rejection on renal transplant survival.
        Transpl Int. 1996; 9: 415-419
        • Pascual J.
        • Zamora J.
        • Pirsch J.D.
        A systematic review of kidney transplantation from expanded criteria donors.
        Am J Kidney Dis. 2008; 52: 553-586
        • Ojo A.O.
        Expanded criteria donors: process and outcomes.
        Semin Dial. 2005; 18: 463-468
        • Linfert D.
        • Chowdhry T.
        • Rabb H.
        Lymphocytes and ischemia-reperfusion injury.
        Transplant Rev (Orlando). 2009; 23: 1-10
        • Sheridan A.M.
        • Bonventre J.V.
        Cell biology and molecular mechanisms of injury in ischemic acute renal failure.
        Curr Opin Nephrol Hypertens. 2000; 9: 427-434
        • Kieran N.E.
        • Rabb H.
        Immune responses in kidney preservation and reperfusion injury.
        J Investig Med. 2004; 52: 310-314
        • Sutton T.A.
        • Fisher C.J.
        • Molitoris B.A.
        Microvascular endothelial injury and dysfunction during ischemic acute renal failure.
        Kidney Int. 2002; 62: 1539-1549
        • Krejci K.
        • Tichy T.
        • Bachleda P.
        • Zadrazil J.
        Calcineurin inhibitor-induced renal allograft nephrotoxicity.
        Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010; 154: 297-306
        • Liu K.D.
        • Brakeman P.R.
        Renal repair and recovery.
        Crit Care Med. 2008; 36: S187-S192
        • Abbate M.
        • Remuzzi G.
        Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies.
        Ren Fail. 1996; 18: 377-388
        • Ponticelli C.
        The mechanisms of acute transplant rejection revisited.
        J Nephrol. 2012; 25: 150-158
        • Rogers N.M.
        • Matthews T.J.
        • Kausman J.Y.
        • Kitching A.R.
        • Coates P.T.
        Kidney dendritic cells: their role in homeostasis, inflammation and transplantation.
        Nephrology (Carlton). 2009; 14: 625-635
        • De Haij S.
        • Woltman A.M.
        • Trouw L.A.
        • et al.
        Renal tubular epithelial cells modulate T-cell responses via ICOS-L and B7-H1.
        Kidney Int. 2005; 68: 2091-2102
        • Knechtle S.J.
        Immunoregulation and tolerance.
        Transplant Proc. 2010; 42: S13-S15
        • Wood K.J.
        Regulatory T cells in transplantation.
        Transplant Proc. 2011; 43: 2135-2136
        • Mosquera Reboredo J.M.
        • Vázquez Martul E.
        Diagnostic criteria of antibody-mediated rejection in kidney transplants.
        Nefrologia. 2011; 31: 382-391
        • Wasowska B.A.
        Mechanisms involved in antibody- and complement-mediated allograft rejection.
        Immunol Res. 2010; 47: 25-44
        • Hidalgo L.G.
        • Sis B.
        • Sellares J.
        • et al.
        NK cell transcripts and NK cells in kidney biopsies from patients with donor specific antibodies: evidence for NK cell involvement in antibody mediated rejection.
        Am J Transplant. 2010; 10: 1812-1822
        • Delorme B.
        • Ringe J.
        • Gallay N.
        • et al.
        Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells.
        Blood. 2008; 111: 2631-2635
        • Collino F.
        • Bruno S.
        • Deregibus M.C.
        • Tetta C.
        • Camussi G.
        MicroRNAs and mesenchymal stem cells.
        Vitam Horm. 2011; 87: 291-320
        • Lange C.
        • Tögel F.
        • Ittrich H.
        • et al.
        Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats.
        Kidney Int. 2005; 68: 1613-1617
        • Tögel F.
        • Hu Z.
        • Weiss K.
        • Isaac J.
        • Lange C.
        • Westenfelder C.
        Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.
        Am J Physiol Renal Physiol. 2005; 289: F31-F42
        • Tögel F.
        • Yang Y.
        • Zhang P.
        • Hu Z.
        • Westenfelder C.
        Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury.
        Am J Physiol Renal Physiol. 2008; 295: F315-F321
        • Wynn R.F.
        • Hart C.A.
        • Corradi-Perini C.
        • et al.
        A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow.
        Blood. 2004; 104: 2643-2645
        • Ji J.F.
        • He B.P.
        • Dheen S.T.
        • Tay S.S.
        Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury.
        Stem Cells. 2004; 22: 415-427
        • Tögel F.
        • Isaac J.
        • Hu Z.
        • Weiss K.
        • Westenfelder C.
        Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury.
        Kidney Int. 2005; 67: 1772-1784
        • Gao H.
        • Priebe W.
        • Glod J.
        • Banerjee D.
        Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium.
        Stem Cells. 2009; 27: 857-865
        • Valentin G.
        • Haas P.
        • Gilmour D.
        The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b.
        Curr Biol. 2007; 17: 1026-1031
        • Dambly-Chaudière C.
        • Cubedo N.
        • Ghysen A.
        Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1.
        BMC Dev Biol. 2007; 7: 23
        • Zhu H.
        • Mitsuhashi N.
        • Klein A.
        • et al.
        The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix.
        Stem Cells. 2006; 24: 928-935
        • Herrera M.B.
        • Bussolati B.
        • Bruno S.
        • et al.
        Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury.
        Kidney Int. 2007; 72: 430-441
        • Lindoso R.S.
        • Araujo D.S.
        • Adão-Novaes J.
        • et al.
        Paracrine interaction between bone marrow-derived stem cells and renal epithelial cells.
        Cell Physiol Biochem. 2011; 28: 267-278
        • Morigi M.
        • Imberti B.
        • Zoja C.
        • et al.
        Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure.
        J Am Soc Nephrol. 2004; 15: 1794-1804
        • Morigi M.
        • Introna M.
        • Imberti B.
        • et al.
        Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice.
        Stem Cells. 2008; 26: 2075-2082
        • Herrera M.B.
        • Bussolati B.
        • Bruno S.
        • Fonsato V.
        • Romanazzi G.M.
        • Camussi G.
        Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury.
        Int J Mol Med. 2004; 14: 1035-1041
        • Duffield J.S.
        • Park K.M.
        • Hsiao L.L.
        • et al.
        Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells.
        J Clin Invest. 2005; 115: 1743-1755
        • Choi S.
        • Park M.
        • Kim J.
        • Hwang S.
        • Park S.
        • Lee Y.
        The role of mesenchymal stem cells in the functional improvement of chronic renal failure.
        Stem Cells Dev. 2009; 18: 521-529
        • Hauser P.V.
        • De Fazio R.
        • Bruno S.
        • et al.
        Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery.
        Am J Pathol. 2010; 177: 2011-2021
        • Humphreys B.D.
        • Valerius M.T.
        • Kobayashi A.
        • et al.
        Intrinsic epithelial cells repair the kidney after injury.
        Cell Stem Cell. 2008; 2: 284-291
        • Ishibe S.
        • Cantley L.G.
        Epithelial-mesenchymal-epithelial cycling in kidney repair.
        Curr Opin Nephrol Hypertens. 2008; 17: 379-385
        • Bi B.
        • Schmitt R.
        • Israilova M.
        • Nishio H.
        • Cantley L.G.
        Stromal cells protect against acute tubular injury via an endocrine effect.
        J Am Soc Nephrol. 2007; 18: 2486-2496
        • Caplan A.I.
        • Dennis J.E.
        Mesenchymal stem cells as trophic mediators.
        J Cell Biochem. 2006; 98: 1076-1084
        • Imberti B.
        • Morigi M.
        • Tomasoni S.
        • et al.
        Insulin-like growth factor-1 sustains stem cell mediated renal repair.
        J Am Soc Nephrol. 2007; 18: 2921-2928
        • Tögel F.
        • Zhang P.
        • Hu Z.
        • Westenfelder C.
        VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury.
        J Cell Mol Med. 2009; 13: 2109-2114
        • Basile D.P.
        The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function.
        Kidney Int. 2007; 72: 151-156
        • Aggarwal S.
        • Pittenger M.F.
        Human mesenchymal stem cells modulate allogeneic immune cell responses.
        Blood. 2005; 105: 1815-1822
        • Bartholomew A.
        • Sturgeon C.
        • Siatskas M.
        • et al.
        Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.
        Exp Hematol. 2002; 30: 42-48
        • Di Nicola M.
        • Carlo-Stella C.
        • Magni M.
        • et al.
        Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.
        Blood. 2002; 99: 3838-3843
        • Meisel R.
        • Zibert A.
        • Laryea M.
        • Göbel U.
        • Däubener W.
        • Dilloo D.
        Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation.
        Blood. 2004; 103: 4619-4621
        • Tse W.T.
        • Pendleton J.D.
        • Beyer W.M.
        • Egalka M.C.
        • Guinan E.C.
        Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.
        Transplantation. 2003; 75: 389-397
        • Selmani Z.
        • Naji A.
        • Zidi I.
        • et al.
        Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells.
        Stem Cells. 2008; 26: 212-222
        • Le Blanc K.
        • Rasmusson I.
        • Sundberg B.
        • et al.
        Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.
        Lancet. 2004; 363: 1439-1441
        • Li H.
        • Guo Z.
        • Jiang X.
        • Zhu H.
        • Li X.
        • Mao N.
        Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease.
        Stem Cells. 2008; 26: 2531-2541
        • García-Olmo D.
        • García-Arranz M.
        • Herreros D.
        • Pascual I.
        • Peiro C.
        • Rodríguez-Montes J.A.
        A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation.
        Dis Colon Rectum. 2005; 48: 1416-1423
        • Casiraghi F.
        • Azzollini N.
        • Cassis P.
        • et al.
        Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells.
        J Immunol. 2008; 181: 3933-3946
        • Camussi G.
        • Deregibus M.C.
        • Bruno S.
        • Cantaluppi V.
        • Biancone L.
        Exosomes/microvesicles as a mechanism of cell to cell communication.
        Kidney Int. 2010; 78: 838-848
        • Bruno S.
        • Grange C.
        • Deregibus M.C.
        • et al.
        Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.
        J Am Soc Nephrol. 2009; 20: 1053-1067
        • Collino F.
        • Deregibus M.C.
        • Bruno S.
        • et al.
        Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs.
        PLoS One. 2010; 5: e11803
        • Ratajczak J.
        • Miekus K.
        • Kucia M.
        • et al.
        Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery.
        Leukemia. 2006; 20: 847-856
        • Aliotta J.M.
        • Sanchez-Guijo F.M.
        • Dooner G.J.
        • et al.
        Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation.
        Stem Cells. 2007; 25: 2245-2256
        • Deregibus M.C.
        • Cantaluppi V.
        • Calogero R.
        • et al.
        Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.
        Blood. 2007; 110: 2440-2448
        • Gatti S.
        • Bruno S.
        • Deregibus M.C.
        • et al.
        Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury.
        Nephrol Dial Transplant. 2011; 26: 1474-1483
        • Sakata N.
        • Chan N.K.
        • Chrisler J.
        • Obenaus A.
        • Hathout E.
        Bone marrow cell cotransplantation with islets improves their vascularization and function.
        Transplantation. 2010; 89: 686-693
        • Perico N.
        • Casiraghi F.
        • Introna M.
        • et al.
        Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility.
        Clin J Am Soc Nephrol. 2011; 6: 412-422
        • Tan J.
        • Wu W.
        • Xu X.
        • et al.
        Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial.
        JAMA. 2012; 307: 1169-1177
        • Tögel F.
        • Westenfelder C.
        Mesenchymal stem cell: a new therapeutic tool for AKI.
        Nat Rev Nephrol. 2010; 6: 179-183
        • Prockop D.J.
        • Olson S.D.
        Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions.
        Blood. 2007; 109: 3147-3151
        • Breitbach M.
        • Bostani T.
        • Roell W.
        • et al.
        Potential risks of bone marrow cell transplantation into infarcted hearts.
        Blood. 2007; 110: 1362-1369
        • Epperly M.W.
        • Guo H.
        • Gretton J.E.
        • Greenberger J.S.
        Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis.
        Am J Respir Cell Mol Biol. 2003; 29: 213-224
        • Kunter U.
        • Rong S.
        • Boor P.
        • et al.
        Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes.
        J Am Soc Nephrol. 2007; 18: 1754-1764