Advertisement
American Journal of Kidney Diseases

Performance of Creatinine-Based GFR Estimating Equations in Solid-Organ Transplant Recipients

Published:April 04, 2014DOI:https://doi.org/10.1053/j.ajkd.2014.01.436

      Background

      Accurate assessment of kidney function is important for the management of solid-organ transplant recipients. In other clinical populations, glomerular filtration rate (GFR) most commonly is estimated using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine or the 4-variable MDRD (Modification of Diet in Renal Disease) Study equation. The accuracy of these equations compared with other GFR estimating equations in transplant recipients has not been carefully studied.

      Study Design

      Diagnostic test study.

      Setting & Participants

      Solid-organ transplant recipients longer than 6 months posttransplantation from 5 clinical populations (N = 3,622, including recipients of kidney [53%], liver [35%], and other or multiple organs [12%]).

      Index Test

      Estimated GFR (eGFR) using creatinine-based GFR estimating equations identified from a systematic review of the literature. Performance of the CKD-EPI creatinine and the MDRD Study equations was compared with alternative equations.

      Reference Test

      Measured GFR (mGFR) from urinary clearance of iothalamate or plasma clearance of iohexol.

      Measurements

      Error (difference between mGFR and eGFR) expressed as P30 (proportion of absolute percent error < 30%) and mean absolute error.

      Results

      We identified 26 GFR estimating equations. Mean mGFR was 55.1 ± 22.7 (SD) mL/min/1.73 m2. P30 and mean absolute error for the CKD-EPI and the MDRD Study equations were 78.9% (99.6% CI, 76.9%-80.8%) for both and 10.6 (99.6% CI, 10.1-11.1) versus 11.0 (99.6% CI, 10.5-11.5) mL/min/1.73 m2, respectively; these equations were more accurate than any of the alternative equations (P < 0.001 for all pairwise comparisons for both measures). They performed better than or as well as the alternative equations in most subgroups defined by demographic and clinical characteristics, including type of transplanted organ.

      Limitations

      Study population included few nonwhites and people with solid-organ transplants other than liver and kidneys.

      Conclusions

      The CKD-EPI creatinine and the MDRD Study equations perform better than the alternative creatinine-based estimating equations in solid-organ transplant recipients. They can be used for clinical management.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group
        KDIGO clinical practice guideline for the care of kidney transplant recipients.
        Am J Transplant. 2009; 9: S1-S155
        • White C.A.
        • Knoll G.A.
        • Poggio E.D.
        Measuring vs estimating glomerular filtration rate in kidney transplantation.
        Transplant Rev (Orlando). 2010; 24: 18-27
      1. US Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for industry pharmacokinetics in patients with impaired renal function—study design, data analysis, and impact on dosing and labeling. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072127.pdf. Accessed January 18, 2013.

      2. National Kidney Disease Education Program (NKDEP). Estimating glomerular filtration rate (GFR). http://nkdep.nih.gov/lab-evaluation/gfr/estimating.shtml. Accessed September 4, 2013.

        • Levey A.S.
        • Coresh J.
        • Greene T.
        • et al.
        Using standardized serum creatinine values in the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate.
        Ann Intern Med. 2006; 145: 247-254
        • Miller W.G.
        Reporting estimated GFR: a laboratory perspective.
        Am J Kidney Dis. 2008; 52: 645-648
        • Earley A.
        • Miskulin D.
        • Lamb E.J.
        • Levey A.S.
        • Uhlig K.
        Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review.
        Ann Intern Med. 2012; 156 (W-270-W-278): 785-795
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
      3. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int Suppl. 2013; 3: 1-150
      4. National Kidney Foundation. KDOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. http://www.kidney.org/professionals/kdoqi/guidelines_ckd/p5_lab_g4.htm. Accessed February 12, 2013.

        • Myers G.L.
        • Miller W.G.
        • Coresh J.
        • et al.
        Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program.
        Clin Chem. 2006; 52: 5-18
        • Murata K.
        • Baumann N.A.
        • Saenger A.K.
        • Larson T.S.
        • Rule A.D.
        • Lieske J.C.
        Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations.
        Clin J Am Soc Nephrol. 2011; 6: 1963-1972
        • Stevens L.A.
        • Zhang Y.
        • Schmid C.H.
        Evaluating the performance of equations for estimating glomerular filtration rate.
        J Nephrol. 2008; 21: 797-807
        • Edwards K.D.
        • Whyte H.M.
        Plasma creatinine level and creatinine clearance as tests of renal function.
        Australas Ann Med. 1959; 8: 218-224
        • Cockcroft D.W.
        • Gault M.H.
        Prediction of creatinine clearance from serum creatinine.
        Nephron. 1976; 16: 31-41
        • Rowe J.W.
        • Andres R.
        • Tobin J.D.
        • Norris A.H.
        • Shock N.W.
        The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study.
        J Gerontol. 1976; 31: 155-163
        • Mogensen C.E.
        • Heilskov N.S.
        Prediction of GFR from serum creatinine.
        Acta Endocrinol Suppl (Copenh). 1980; 238: 109
        • Taylor G.O.
        • Bamgboye E.A.
        • Oyediran A.B.
        • Longe O.
        Serum creatinine and prediction formulae for creatinine clearance.
        Afr J Med Med Sci. 1982; 11: 175-181
        • Gates G.F.
        Creatinine clearance estimation from serum creatinine values: an analysis of three mathematical models of glomerular function.
        Am J Kidney Dis. 1985; 5: 199-205
        • Kaji D.
        • Strauss I.
        • Kahn T.
        Serum creatinine in patients with spinal cord injury.
        Mt Sinai J Med. 1990; 57: 160-164
        • Robinson B.A.
        • Frampton C.M.
        • Colls B.M.
        • Atkinson C.H.
        • Fitzharris B.M.
        Comparison of methods of assessment of renal function in patients with cancer treated with cisplatin, carboplatin or methotrexate.
        Aust N Z J Med. 1990; 20: 657-662
        • Walser M.
        Assessing renal function from creatinine measurements in adults with chronic renal failure.
        Am J Kidney Dis. 1998; 32: 23-31
        • Nankivell B.J.
        • Chapman J.R.
        • Allen R.D.
        Predicting glomerular filtration rate after simultaneous pancreas and kidney transplantation.
        Clin Transplant. 1995; 9: 129-134
        • Nankivell B.J.
        • Gruenewald S.M.
        • Allen R.D.
        • Chapman J.R.
        Predicting glomerular filtration rate after kidney transplantation.
        Transplantation. 1995; 59: 1683-1689
        • Lewis J.
        • Agodoa L.
        • Cheek D.
        • et al.
        Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate.
        Am J Kidney Dis. 2001; 38: 744-753
        • Baracskay D.
        • Jarjoura D.
        • Cugino A.
        • Blend D.
        • Rutecki G.W.
        • Whittier F.C.
        Geriatric renal function: estimating glomerular filtration in an ambulatory elderly population.
        Clin Nephrol. 1997; 47: 222-228
        • Martin L.
        • Chatelut E.
        • Boneu A.
        • et al.
        Improvement of the Cockcroft-Gault equation for predicting glomerular filtration in cancer patients.
        Bull Cancer. 1998; 85: 631-636
        • Levey A.S.
        • Bosch J.P.
        • Lewis J.B.
        • Greene T.
        • Rogers N.
        • Roth D.
        A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.
        Ann Intern Med. 1999; 130: 461-470
        • Yukawa E.
        • Hamachi Y.
        • Higuchi S.
        • Aoyama T.
        Predictive performance of equations to estimate creatinine clearance from serum creatinine in Japanese patients with congestive heart failure.
        Am J Ther. 1999; 6: 71-76
        • Toto R.D.
        • Kirk K.A.
        • Coresh J.
        • et al.
        Evaluation of serum creatinine for estimating glomerular filtration rate in African Americans with hypertensive nephrosclerosis: results from the African-American Study of Kidney Disease and Hypertension (AASK) Pilot Study.
        J Am Soc Nephrol. 1997; 8: 279-287
        • Wright J.G.
        • Boddy A.V.
        • Highley M.
        • Fenwick J.
        • McGill A.
        • Calvert A.H.
        Estimation of glomerular filtration rate in cancer patients.
        Br J Cancer. 2001; 84: 452-459
        • Rule A.D.
        • Larson T.S.
        • Bergstralh E.J.
        • Slezak J.M.
        • Jacobsen S.J.
        • Cosio F.G.
        Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease.
        Ann Intern Med. 2004; 141: 929-937
        • Virga G.
        • Gaspari F.
        • Thomaseth K.
        • Cara M.
        • Mastrosimone S.
        • Rossi V.
        A new equation for estimating renal function using age, body weight and serum creatinine.
        Nephron Clin Pract. 2007; 105: c43-c53
        • Nix D.E.
        • Erstad B.L.
        • Nakazato P.Z.
        • Barletta J.F.
        • Matthias K.R.
        • Krueger T.S.
        Estimation of creatinine clearance in end-stage liver disease.
        Ann Pharmacother. 2006; 40: 900-908
        • Douville P.
        • Martel A.R.
        • Talbot J.
        • Desmeules S.
        • Langlois S.
        • Agharazii M.
        Impact of age on glomerular filtration estimates.
        Nephrol Dial Transplant. 2009; 24: 97-103
        • Matsuo S.
        • Imai E.
        • Horio M.
        • et al.
        Revised equations for estimated GFR from serum creatinine in Japan.
        Am J Kidney Dis. 2009; 53: 982-992
        • Schaeffner E.S.
        • Ebert N.
        • Delanaye P.
        • et al.
        Two novel equations to estimate kidney function in persons aged 70 years or older.
        Ann Intern Med. 2012; 157: 471-481
        • Zahran A.
        • Qureshi M.
        • Shoker A.
        Comparison between creatinine and cystatin C-based GFR equations in renal transplantation.
        Nephrol Dial Transplant. 2007; 22: 2659-2668
        • Zahran A.
        • Hossain M.A.
        • Kora M.A.E.
        • Galal A.Z.
        • Shoker A.
        Validation of the Virga GFR equation in a renal transplant population.
        Nephron Clin Pract. 2008; 109: c140-c147
        • Gera M.
        • Slezak J.M.
        • Rule A.D.
        • Larson T.S.
        • Stegall M.D.
        • Cosio F.G.
        Assessment of changes in kidney allograft function using creatinine-based estimates of glomerular filtration rate.
        Am J Transplant. 2007; 7: 880-887
        • Pöge U.
        • Gerhardt T.
        • Palmedo H.
        • Klehr H.-U.
        • Sauerbruch T.
        • Woitas R.P.
        MDRD equations for estimation of GFR in renal transplant recipients.
        Am J Transplant. 2005; 5: 1306-1311
        • Pöge U.
        • Gerhardt T.
        • Stoffel-Wagner B.
        • Sauerbruch T.
        • Woitas R.P.
        Validation of the CKD-EPI formula in patients after renal transplantation.
        Nephrol Dial Transplant. 2011; 26: 4104-4108
        • Kukla A.
        • El-Shahawi Y.
        • Leister E.
        • et al.
        GFR-estimating models in kidney transplant recipients on a steroid-free regimen.
        Nephrol Dial Transplant. 2010; 25: 1653-1661
        • Gonwa T.A.
        • Jennings L.
        • Mai M.L.
        • Stark P.C.
        • Levey A.S.
        • Klintmalm G.B.
        Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations.
        Liver Transpl. 2004; 10: 301-309
        • Tangri N.
        • Alam A.
        • Edwardes M.D.
        • Davidson A.
        • Deschênes M.
        • Cantarovich M.
        Evaluating cimetidine for GFR estimation in liver transplant recipients.
        Nephrol Dial Transplant. 2010; 25: 1285-1289
        • Gerhardt T.
        • Pöge U.
        • Stoffel-Wagner B.
        • Palmedo H.
        • Sauerbruch T.
        • Woitas R.P.
        Creatinine-based glomerular filtration rate estimation in patients with liver disease: the new Chronic Kidney Disease Epidemiology Collaboration equation is not better.
        Eur J Gastroenterol Hepatol. 2011; 23: 969-973
        • Masson I.
        • Maillard N.
        • Tack I.
        • et al.
        GFR estimation using standardized cystatin C in kidney transplant recipients.
        Am J Kidney Dis. 2013; 61: 279-284
        • White C.A.
        • Akbari A.
        • Doucette S.
        • Fergusson D.
        • Knoll G.A.
        Estimating glomerular filtration rate in kidney transplantation: is the new Chronic Kidney Disease Epidemiology Collaboration Equation any better?.
        Clin Chem. 2010; 56: 474-477
        • Buron F.
        • Hadj-Aissa A.
        • Dubourg L.
        • et al.
        Estimating glomerular filtration rate in kidney transplant recipients: performance over time of four creatinine-based formulas.
        Transplantation. 2011; 92: 1005-1011
        • White C.A.
        • Huang D.
        • Akbari A.
        • Garland J.
        • Knoll G.A.
        Performance of creatinine-based estimates of GFR in kidney transplant recipients: a systematic review.
        Am J Kidney Dis. 2008; 51: 1005-1015
        • Stevens L.A.
        • Coresh J.
        • Greene T.
        • Levey A.S.
        Assessing kidney function—measured and estimated glomerular filtration rate.
        N Engl J Med. 2006; 354: 2473-2483
        • Stevens L.A.
        • Schmid C.H.
        • Zhang Y.L.
        • et al.
        Development and validation of GFR-estimating equations using diabetes, transplant and weight.
        Nephrol Dial Transplant. 2010; 25: 449-457
        • Dawoud D.
        • Harms J.C.
        • Williams T.A.
        • Kumar V.
        • Allon M.
        Vascular access management in patients with failing kidney transplants.
        Nephrol Dial Transplant. 2011; 26: 4104-4108
        • Akbari A.
        • Hussain N.
        • Karpinski J.
        • Knoll G.A.
        Chronic kidney disease management: comparison between renal transplant recipients and nontransplant patients with chronic kidney disease.
        Nephron Clin Pract. 2007; 107: c7-c13
        • Kasiske B.L.
        • Israni A.K.
        • Snyder J.J.
        • Skeans M.A.
        The relationship between kidney function and long-term graft survival after kidney transplant.
        Am J Kidney Dis. 2011; 57: 466-475
        • Kasiske B.L.
        • Israni A.K.
        • Snyder J.J.
        • Skeans M.A.
        • Peng Y.
        • Weinhandl E.D.
        A simple tool to predict outcomes after kidney transplant.
        Am J Kidney Dis. 2010; 56: 947-960
        • Inker L.A.
        • Schmid C.H.
        • Tighiouart H.
        • et al.
        Estimating glomerular filtration rate from serum creatinine and cystatin C.
        N Engl J Med. 2012; 367: 20-29
        • Barbour G.L.
        • Crumb C.K.
        • Boyd C.M.
        • Reeves R.D.
        • Rastogi S.P.
        • Patterson R.M.
        Comparison of inulin, iothalamate, and 99mTc-DTPA for measurement of glomerular filtration rate.
        J Nucl Med. 1976; 17: 317-320

      Linked Article

      • Creatinine-Based GFR Estimating Equations in Kidney Transplant Recipients
        American Journal of Kidney DiseasesVol. 64Issue 5
        • Preview
          Shaffi et al1 conclude that the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations perform better in kidney transplant recipients than all other proposed glomerular filtration rate (GFR) estimating equations, confirming data from White et al2 in 2008. We have 4 comments regarding this conclusion.
        • Full-Text
        • PDF
      • Assessing Kidney Function in Transplant Recipients: Time to Work Together and Address the Most Relevant Questions
        American Journal of Kidney DiseasesVol. 64Issue 5
        • Preview
          The study by Shaffi et al1 validates previous work demonstrating the superiority of the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations over other glomerular filtration rate (GFR) estimating equations in transplant recipients.2,3 The continued emphasis on demonstrating the superiority of particular creatinine-based equations over others, including immaterial comparisons with equations designed for use in very different populations (ie, individuals of Japanese ancestry or advanced age)4,5 fails to address the most clinically relevant issues related to kidney function assessment in transplantation.
        • Full-Text
        • PDF