therapy with gemcitabine.

As suggested by Park et al., it is reasonable to hypothesize that discontinuing long-term immunosuppression with MMF may have led to an increase in IL-12 levels in our patient. A combination of factors, including chemotherapy with gemcitabine, likely led to the development of the chronic thrombotic microangiopathy seen on kidney biopsy. Other elements, such as altered cytokine production, of which increased IL-12 levels is an example, may have had a role. We appreciate their letter highlighting this potential mechanism.

Acknowledgements

Financial Disclosure: The authors declare that they have no relevant financial interests.

References


Population Prevalence of Proteinuria and Diagnostic Accuracy of Urine Dipsticks

To the Editor:

The editorial by Wen et al that accompanied our article reports that the proportion of the AusDiab cohort with an ACR ≥ 30 mg/g was 7.4%. Therefore the statement that “the AusDiab population had an unusual distribution of 16.9% proteinuria” is incorrect and potentially confuses the relevance of our findings. It should also be noted that a higher population prevalence of ACR ≥ 30 mg/g would in fact lead to a lower false-positive rate, not the reverse.

Sarah L. White, MPH, PhD
Kevan R. Polkinghorne, FRACP, MClinEpi, PhD
Steven J. Chadbain, FRACP, PhD

1University of Sydney
Sydney, Australia
2Monash Medical Center
Melbourne, Australia
3Royal Prince Alfred Hospital
Sydney, Australia

Acknowledgments

Financial Disclosure: The authors declare that they have no relevant financial interests.

References


© 2011 by the National Kidney Foundation, Inc. doi:10.1053/j.ajkd.2011.10.004

In Reply to ‘Population Prevalence of Proteinuria and Diagnostic Accuracy of Urine Dipsticks’

We appreciate the opportunity to clarify aspects of our editorial in response to the comments of White et al. In our editorial, the 16.9% rate of “dipstick proteinuria” referred to the result reported by White et al. In their study they found urine dipstick readings of “negative, trace, or ≥1+ result in 83.1%, 8%, and 8.1% of participants, respectively,” indicating that either 16.9% or 16.1% had proteinuria detected by dipstick (ie, 100% – 83.1% = 16.9% or 8% + 8.1% = 16.1%). When assessed by albumin-creatinine ratio (ACR), the proportion with proteinuria is comparable to other studies (Table 1) but prevalences given for the 2 dipstick reading categories of ≥1+ and trace or higher are substantially greater than those found in most other studies. In pooled studies by the Chronic Kidney Disease Prognosis Consortium (CKD-PC) of 1.1 million individuals, dipstick proteinuria ≥1+ was found in 3.3% (2.3% + 1.0% = 3.3%); in the Taiwan study, this value was 1.7% (0.9% + 0.8% = 1.7%; Table 1). Thus, in our opinion, the proportion...