Advertisement
American Journal of Kidney Diseases

Intravenous Solutions in the Care of Patients With Volume Depletion and Electrolyte Abnormalities

Published:April 24, 2015DOI:https://doi.org/10.1053/j.ajkd.2015.01.031
      Infusion fluids are often given to restore blood pressure (volume resuscitation), but may also be administered to replace ongoing losses, match insensible losses, correct electrolyte or acid-base disorders, or provide glucose. The development of new infusion fluids has provided clinicians with a wide range of products. Although the choice for a certain infusion fluid is often driven more by habit than by careful consideration, we believe it is useful to approach infusion fluids as drugs and consider their pharmacokinetic and pharmacodynamic characteristics. This approach not only explains why infusion fluids may cause electrolyte and acid-base disturbances, but also why they may compromise kidney function or coagulation. In this teaching case, we present a 19-year-old patient in whom severe hypernatremia developed as a result of normal saline solution infusion and explore the pharmacokinetic and pharmacodynamic effects of frequently used infusion fluids. We review clinical evidence to guide the selection of the optimal infusion fluid.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barsoum N.
        • Kleeman C.
        Now and then, the history of parenteral fluid administration.
        Am J Nephrol. 2002; 22: 284-289
        • Shafiee M.A.
        • Bohn D.
        • Hoorn E.J.
        • Halperin M.L.
        How to select optimal maintenance intravenous fluid therapy.
        QJM. 2003; 96: 601-610
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
        • Fenves A.Z.
        • Kirkpatrick 3rd, H.M.
        • Patel V.V.
        • Sweetman L.
        • Emmett M.
        Increased anion gap metabolic acidosis as a result of 5-oxoproline (pyroglutamic acid): a role for acetaminophen.
        Clin J Am Soc Nephrol. 2006; 1: 441-447
        • Severs D.
        • Hoorn E.J.
        • Rookmaaker M.B.
        A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence.
        Nephrol Dial Transplant. 2015; 30: 178-187
        • Woodcock T.E.
        • Woodcock T.M.
        Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy.
        Br J Anaesth. 2012; 108: 384-394
        • Devaraj S.
        • Yun J.M.
        • Adamson G.
        • Galvez J.
        • Jialal I.
        C-Reactive protein impairs the endothelial glycocalyx resulting in endothelial dysfunction.
        Cardiovasc Res. 2009; 84: 479-484
        • Henry C.B.
        • Duling B.R.
        TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx.
        Am J Physiol Heart Circ Physiol. 2000; 279: H2815-H2823
        • Steppan J.
        • Hofer S.
        • Funke B.
        • et al.
        Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix.
        J Surg Res. 2011; 165: 136-141
        • Berg S.
        • Golster M.
        • Lisander B.
        Albumin extravasation and tissue washout of hyaluronan after plasma volume expansion with crystalloid or hypooncotic colloid solutions.
        Acta Anaesthesiol Scand. 2002; 46: 166-172
        • Engstrom M.
        • Schott U.
        • Romner B.
        • Reinstrup P.
        Acidosis impairs the coagulation: a thromboelastographic study.
        J Trauma. 2006; 61: 624-628
        • Kellum J.A.
        • Song M.
        • Li J.
        Science review: extracellular acidosis and the immune response: clinical and physiologic implications.
        Crit Care. 2004; 8: 331-336
        • Stuart J.
        Erythrocyte rheology.
        J Clin Pathol. 1985; 38: 965-977
        • Finfer S.
        • Bellomo R.
        • Boyce N.
        • et al.
        A comparison of albumin and saline for fluid resuscitation in the intensive care unit.
        N Engl J Med. 2004; 350: 2247-2256
        • Ernest D.
        • Belzberg A.S.
        • Dodek P.M.
        Distribution of normal saline and 5% albumin infusions in septic patients.
        Crit Care Med. 1999; 27: 46-50
        • Trof R.J.
        • Sukul S.P.
        • Twisk J.W.
        • Girbes A.R.
        • Groeneveld A.B.
        Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia.
        Intensive Care Med. 2010; 36: 697-701
        • Perner A.
        • Haase N.
        • Guttormsen A.B.
        • et al.
        Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis.
        N Engl J Med. 2012; 367: 124-134
        • Brunkhorst F.M.
        • Engel C.
        • Bloos F.
        • et al.
        Intensive insulin therapy and pentastarch resuscitation in severe sepsis.
        N Engl J Med. 2008; 358: 125-139
        • Myburgh J.A.
        • Finfer S.
        • Bellomo R.
        • et al.
        Hydroxyethyl starch or saline for fluid resuscitation in intensive care.
        N Engl J Med. 2012; 367: 1901-1911
        • Phillips D.P.
        • Kaynar A.M.
        • Kellum J.A.
        • Gomez H.
        Crystalloids vs. colloids: KO at the twelfth round?.
        Crit Care. 2013; 17: 319
        • Perel P.
        • Roberts I.
        • Ker K.
        Colloids versus crystalloids for fluid resuscitation in critically ill patients.
        Cochrane Database Syst Rev. 2013; 2: CD000567
        • Kruer R.M.
        • Ensor C.R.
        Colloids in the intensive care unit.
        Am J Health Syst Pharm. 2012; 69: 1635-1642
        • Mutter T.C.
        • Ruth C.A.
        • Dart A.B.
        Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function.
        Cochrane Database Syst Rev. 2013; 7: CD007594
        • Zarychanski R.
        • Abou-Setta A.M.
        • Turgeon A.F.
        • et al.
        Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis.
        JAMA. 2013; 309: 678-688
        • Bayer O.
        • Reinhart K.
        • Sakr Y.
        • et al.
        Renal effects of synthetic colloids and crystalloids in patients with severe sepsis: a prospective sequential comparison.
        Crit Care Med. 2011; 39: 1335-1342
        • Reid F.
        • Lobo D.N.
        • Williams R.N.
        • Rowlands B.J.
        • Allison S.P.
        (Ab)normal saline and physiological Hartmann's solution: a randomized double-blind crossover study.
        Clin Sci (Lond). 2003; 104: 17-24
        • Williams E.L.
        • Hildebrand K.L.
        • McCormick S.A.
        • Bedel M.J.
        The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers.
        Anesth Analg. 1999; 88: 999-1003
        • Chowdhury A.H.
        • Cox E.F.
        • Francis S.T.
        • Lobo D.N.
        A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers.
        Ann Surg. 2012; 256: 18-24
        • Chowdhury A.H.
        • Cox E.F.
        • Francis S.T.
        • Lobo D.N.
        A randomized, controlled, double-blind crossover study on the effects of 1-L infusions of 6% hydroxyethyl starch suspended in 0.9% saline (voluven) and a balanced solution (plasma volume redibag) on blood volume, renal blood flow velocity, and renal cortical tissue perfusion in healthy volunteers.
        Ann Surg. 2014; 259: 881-887
        • Diebel L.N.
        • Dulchavsky S.A.
        • Wilson R.F.
        Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow.
        J Trauma. 1992; 33 (discussion 48-49): 45-48
        • Vidal M.G.
        • Ruiz Weisser J.
        • Gonzalez F.
        • et al.
        Incidence and clinical effects of intra-abdominal hypertension in critically ill patients.
        Crit Care Med. 2008; 36: 1823-1831
        • Scheingraber S.
        • Rehm M.
        • Sehmisch C.
        • Finsterer U.
        Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery.
        Anesthesiology. 1999; 90: 1265-1270
        • Wilcox C.S.
        Regulation of renal blood flow by plasma chloride.
        J Clin Invest. 1983; 71: 726-735
        • Quilley C.P.
        • Lin Y.S.
        • McGiff J.C.
        Chloride anion concentration as a determinant of renal vascular responsiveness to vasoconstrictor agents.
        Br J Pharmacol. 1993; 108: 106-110
        • Greger R.
        • Velazquez H.
        The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism.
        Kidney Int. 1987; 31: 590-596
        • Hansen P.B.
        • Jensen B.L.
        • Skott O.
        Chloride regulates afferent arteriolar contraction in response to depolarization.
        Hypertension. 1998; 32: 1066-1070
        • Jensen B.L.
        • Ellekvist P.
        • Skott O.
        Chloride is essential for contraction of afferent arterioles after agonists and potassium.
        Am J Physiol. 1997; 272: F389-F396
        • Kiraly L.N.
        • Differding J.A.
        • Enomoto T.M.
        • et al.
        Resuscitation with normal saline (NS) vs. lactated Ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model.
        J Trauma. 2006; 61 (discussion 64-65): 57-64
        • Todd S.R.
        • Malinoski D.
        • Muller P.J.
        • Schreiber M.A.
        Lactated Ringer's is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock.
        J Trauma. 2007; 62: 636-639
        • Shires G.T.
        • Holman J.
        Dilution acidosis.
        Ann Intern Med. 1948; 28: 557-559
        • Kellum J.A.
        • Bellomo R.
        • Kramer D.J.
        • Pinsky M.R.
        Etiology of metabolic acidosis during saline resuscitation in endotoxemia.
        Shock. 1998; 9: 364-368
        • McFarlane C.
        • Lee A.
        A comparison of Plasmalyte 148 and 0.9% saline for intra-operative fluid replacement.
        Anaesthesia. 1994; 49: 779-781
        • Karet F.E.
        Mechanisms in hyperkalemic renal tubular acidosis.
        J Am Soc Nephrol. 2009; 20: 251-254
        • Julian B.A.
        • Galla J.H.
        • Guthrie Jr., G.P.
        • Kotchen T.A.
        Renin and aldosterone responses to short-term NaCl or NaHCO3 loading in man.
        J Lab Clin Med. 1982; 100: 261-268
        • Hou J.
        Regulation of paracellular transport in the distal nephron.
        Curr Opin Nephrol Hypertens. 2012; 21: 547-551
        • Leviel F.
        • Hubner C.A.
        • Houillier P.
        • et al.
        The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice.
        J Clin Invest. 2010; 120: 1627-1635
        • Schrier R.W.
        Body water homeostasis: clinical disorders of urinary dilution and concentration.
        J Am Soc Nephrol. 2006; 17: 1820-1832
        • Polderman K.H.
        • Schreuder W.O.
        • Strack van Schijndel R.J.
        • Thijs L.G.
        Hypernatremia in the intensive care unit: an indicator of quality of care?.
        Crit Care Med. 1999; 27: 1105-1108
        • Hoorn E.J.
        • Betjes M.G.
        • Weigel J.
        • Zietse R.
        Hypernatraemia in critically ill patients: too little water and too much salt.
        Nephrol Dial Transplant. 2008; 23: 1562-1568
        • Lindner G.
        • Kneidinger N.
        • Holzinger U.
        • Druml W.
        • Schwarz C.
        Tonicity balance in patients with hypernatremia acquired in the intensive care unit.
        Am J Kidney Dis. 2009; 54: 674-679
        • Waite M.D.
        • Fuhrman S.A.
        • Badawi O.
        • Zuckerman I.H.
        • Franey C.S.
        Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay.
        J Crit Care. 2013; 28: 405-412
        • Palevsky P.M.
        • Bhagrath R.
        • Greenberg A.
        Hypernatremia in hospitalized patients.
        Ann Intern Med. 1996; 124: 197-203
        • Steele A.
        • Gowrishankar M.
        • Abrahamson S.
        • Mazer C.D.
        • Feldman R.D.
        • Halperin M.L.
        Postoperative hyponatremia despite near-isotonic saline infusion: a phenomenon of desalination.
        Ann Intern Med. 1997; 126: 20-25
        • Burdett E.
        • Dushianthan A.
        • Bennett-Guerrero E.
        • et al.
        Perioperative buffered versus non-buffered fluid administration for surgery in adults.
        Cochrane Database Syst Rev. 2012; 12: CD004089
        • Shaw A.D.
        • Bagshaw S.M.
        • Goldstein S.L.
        • et al.
        Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte.
        Ann Surg. 2012; 255: 821-829
        • McCluskey S.A.
        • Karkouti K.
        • Wijeysundera D.
        • Minkovich L.
        • Tait G.
        • Beattie W.S.
        Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study.
        Anesth Analg. 2013; 117: 412-421
        • Yunos N.M.
        • Kim I.B.
        • Bellomo R.
        • et al.
        The biochemical effects of restricting chloride-rich fluids in intensive care.
        Crit Care Med. 2011; 39: 2419-2424
        • Yunos N.M.
        • Bellomo R.
        • Hegarty C.
        • Story D.
        • Ho L.
        • Bailey M.
        Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults.
        JAMA. 2012; 308: 1566-1572
        • Raghunathan K.
        • Shaw A.
        • Nathanson B.
        • et al.
        Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*.
        Crit Care Med. 2014; 42: 1585-1591
        • Hadimioglu N.
        • Saadawy I.
        • Saglam T.
        • Ertug Z.
        • Dinckan A.
        The effect of different crystalloid solutions on acid-base balance and early kidney function after kidney transplantation.
        Anesth Analg. 2008; 107: 264-269
        • Khajavi M.R.
        • Etezadi F.
        • Moharari R.S.
        • et al.
        Effects of normal saline vs. lactated Ringer's during renal transplantation.
        Ren Fail. 2008; 30: 535-539
        • Kim S.Y.
        • Huh K.H.
        • Lee J.R.
        • Kim S.H.
        • Jeong S.H.
        • Choi Y.S.
        Comparison of the effects of normal saline versus Plasmalyte on acid-base balance during living donor kidney transplantation using the Stewart and base excess methods.
        Transplant Proc. 2013; 45: 2191-2196
        • O'Malley C.M.
        • Frumento R.J.
        • Hardy M.A.
        • et al.
        A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation.
        Anesth Analg. 2005; 100 (table of contents): 1518-1524
        • Zornow M.H.
        • Todd M.M.
        • Moore S.S.
        The acute cerebral effects of changes in plasma osmolality and oncotic pressure.
        Anesthesiology. 1987; 67: 936-941