American Journal of Kidney Diseases

Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study


      Hyperuricemia is associated with essential hypertension in children. No previous studies have evaluated the effect of hyperuricemia on progression of chronic kidney disease (CKD) in children.

      Study Design

      Prospective observational cohort study.

      Setting & Participants

      Children and adolescents (n = 678 cross-sectional; n = 627 longitudinal) with a median age of 12.3 (IQR, 8.6-15.6) years enrolled at 52 North American sites of the CKiD (CKD in Children) Study.


      Serum uric acid level (<5.5, 5.5-7.5, and >7.5 mg/dL).


      Composite end point of either >30% decline in glomerular filtration rate (GFR) or initiation of renal replacement therapy.


      Age, sex, race, blood pressure status, GFR, CKD cause, urine protein-creatinine ratio (<0.5, 0.5-<2.0, and ≥2.0 mg/mg), age- and sex-specific body mass index > 95th percentile, use of diuretics, and serum uric acid level.


      Older age, male sex, lower GFR, and body mass index > 95th percentile were associated with higher uric acid levels. 162, 294, and 171 participants had initial uric acid levels < 5.5, 5.5 to 7.5, or >7.5 mg/dL, respectively. We observed 225 instances of the composite end point over 5 years. In a multivariable parametric time-to-event analysis, compared with participants with initial uric acid levels < 5.5 mg/dL, those with uric acid levels of 5.5 to 7.5 or >7.5 mg/dL had 17% shorter (relative time, 0.83; 95% CI, 0.62-1.11) or 38% shorter (relative time, 0.62; 95% CI, 0.45-0.85) times to event, respectively. Hypertension, lower GFR, glomerular CKD cause, and elevated urine protein-creatinine ratio were also associated with faster times to the composite end point.


      The study lacked sufficient data to examine how use of specific medications might influence serum uric acid levels and CKD progression.


      Hyperuricemia is a previously undescribed independent risk factor for faster progression of CKD in children and adolescents. It is possible that treatment of children and adolescents with CKD with urate-lowering therapy could slow disease progression.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Feig D.I.
        Serum uric acid and the risk of hypertension and chronic kidney disease.
        Curr Opin Rheumatol. 2014; 26: 176-185
        • Dawson J.
        • Jeemon P.
        • Hetherington L.
        • et al.
        Serum uric acid level, longitudinal blood pressure, renal function, and long-term mortality in treated hypertensive patients.
        Hypertension. 2013; 62: 105-111
        • Krishnan E.
        • Akhras K.S.
        • Sharma H.
        • et al.
        Serum urate and incidence of kidney disease among veterans with gout.
        J Rheumatol. 2013; 40: 1166-1172
        • Ohta Y.
        • Tsuchihashi T.
        • Kiyohara K.
        • Oniki H.
        Increased uric acid promotes decline of the renal function in hypertensive patients: a 10-year observational study.
        Intern Med. 2012; 52: 1467-1472
        • Alper A.B.
        • Chen W.
        • Yau L.
        • Srinivasan S.R.
        • Berenson G.S.
        • Hamm L.L.
        Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study.
        Hypertension. 2005; 45: 34-38
        • Loeffler L.F.
        • Navas-Acien A.
        • Brady T.M.
        • Miller E.R.
        • Fadrowski J.J.
        Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999-2006.
        Hypertension. 2012; 59: 811-817
        • Goldstein H.S.
        • Manowitz P.
        Relation between serum uric acid and blood pressure in adolescents.
        Ann Hum Biol. 1993; 20: 423-431
        • Gruskin A.B.
        The adolescent with essential hypertension.
        Am J Kidney Dis. 1985; 6: 86-90
        • Jones D.P.
        • Richey P.A.
        • Alpert B.S.
        • Li R.
        Serum uric acid and ambulatory blood pressure in children with primary hypertension.
        Pediatr Res. 2008; 64: 556-561
        • Pan S.
        • He C.H.
        • Ma Y.T.
        • et al.
        Serum uric acid levels are associated with high blood pressure in Chinese children and adolescents aged 10-15 years.
        J Hypertens. 2014; 32: 998-1004
        • Török E.
        • Gyarfas I.
        • Csukas M.
        Factors associated with stable high blood pressure in adolescents.
        J Hypertens. 1985; 3: S389-S390
        • Viazzi F.
        • Antolini L.
        • Giussani M.
        • et al.
        Serum uric acid and blood pressure in children at cardiovascular risk.
        Pediatrics. 2013; 132: e93-e99
        • Assadi F.
        Allopurinol enhances the blood pressure lowering effect of enalapril in children with hyperuricemic essential hypertension.
        J Nephrol. 2014; 27: 51-56
        • Feig D.I.
        • Soletsky B.
        • Johnson R.J.
        Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial.
        JAMA. 2008; 300: 924-932
        • Soletsky B.
        • Feig D.I.
        Uric acid reduction rectifies prehypertension in obese adolescents.
        Hypertension. 2012; 60: 1148-1156
        • Feig D.I.
        • Johnson R.J.
        Hyperuricemia in childhood primary hypertension.
        Hypertension. 2003; 42: 247-252
        • Mazzali M.
        • Kanellis J.
        • Han L.
        • et al.
        Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism.
        Am J Physiol Renal Physiol. 2002; 282: F991-F997
        • Schwartz G.J.
        • Schneider M.F.
        • Maier P.S.
        • et al.
        Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C.
        Kidney Int. 2012; 82: 445-453
        • Levey A.S.
        • Inker L.A.
        • Matsushita K.
        • et al.
        GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration.
        Am J Kidney Dis. 2014; 64: 821-835
        • Warady B.A.
        • Abraham A.G.
        • Schwartz G.J.
        • et al.
        Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the Chronic Kidney Disease in Children (CKiD) Cohort.
        Am J Kidney Dis. 2015; 65: 878-888
        • Cox C.
        • Chu H.
        • Schneider M.F.
        • Muñoz A.
        Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution.
        Stat Med. 2007; 26: 4352-4374
        • Nguyen S.
        • Choi H.K.
        • Lustig R.H.
        • Hsu C.Y.
        Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents.
        J Pediatr. 2009; 154: 807-813
        • Hsu C.Y.
        • Iribarren C.
        • McCulloch C.E.
        • et al.
        Risk factors for end-stage renal disease: 25-year follow-up.
        Arch Intern Med. 2009; 169: 342-350
        • Colantonio D.A.
        • Kyriakopoulou L.
        • Chan M.K.
        • et al.
        Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children.
        Clin Chem. 2012; 58: 854-868
        • Gomez P.
        • Coca C.
        • Vargas C.
        • Acebillo J.
        • Martinez A.
        Normal reference-intervals for 20 biochemical variables in healthy infants, children, and adolescents.
        Clin Chem. 1984; 30: 407-412
        • Jagarinec N.
        • Flegar-Meštrić Z.
        • Šurina B.
        • Vrhovski-Hebrang D.
        • Preden-Kereković V.
        Pediatric reference intervals for 34 biochemical analytes in urban school children and adolescents.
        Clin Chem Lab Med. 1998; 36: 327-337
        • Kubota M.
        • Nagai A.
        • Tang L.
        • Tokuda M.
        Investigation on hyperuricemia in children with obesity or various pediatric disorders.
        Nucleosides Nucleotides Nucleic Acids. 2011; 30: 1051-1059
        • Lockitch G.
        • Halstead A.C.
        • Albersheim S.
        • MacCallum C.
        • Quigley G.
        Age- and sex-specific pediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer.
        Clin Chem. 1998; 34: 1622-1625
        • Ridefelt P.
        • Aldrimer M.
        • Rödöö P.O.
        • et al.
        Population-based pediatric reference intervals for general clinical chemistry analytes on the Abbott Architect ci8200 instrument.
        Clin Chem Lab Med. 2012; 50: 845-851
        • Burritt M.F.
        • Slockbower J.M.
        • Forsman R.W.
        • Offord K.P.
        • Bergstralh E.J.
        • Smithson W.A.
        Pediatric reference intervals for 19 biologic variables in healthy children.
        Mayo Clin Proc. 1990; 65: 329-336
        • Langford H.G.
        • Blaufox M.D.
        • Borhani N.O.
        • et al.
        Is thiazide-produced uric acid elevation harmful? Analysis of data from the Hypertension Detection and Follow-up Program.
        Arch Intern Med. 1987; 147: 645-649
        • Madero M.
        • Sarnak M.J.
        • Wang X.
        • et al.
        Uric acid and long-term outcomes in CKD.
        Am J Kidney Dis. 2009; 53: 796-803
        • Cho S.M.
        • Lee S.G.
        • Kim H.S.
        • Kim J.H.
        Establishing pediatric reference intervals for 13 biochemical analytes derived from normal subjects in a pediatric endocrinology clinic in Korea.
        Clin Biochem. 2014; 47: 268-271
        • Clifford S.M.
        • Bunker A.M.
        • Jacobsen J.R.
        • Roberts W.L.
        Age and gender specific pediatric reference intervals for aldolase, amylase, ceruloplasmin, creatine kinase, pancreatic amylase, prealbumin, and uric acid.
        Clin Chim Acta. 2011; 412: 788-790
        • Siu Y.P.
        • Leung K.T.
        • Tong M.K.H.
        • Kwan T.H.
        Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level.
        Am J Kidney Dis. 2006; 47: 51-59
        • Suliman M.E.
        • Johnson R.J.
        • García-López E.
        • et al.
        J-Shaped mortality relationship for uric acid in CKD.
        Am J Kidney Dis. 2006; 48: 761-771
        • Goicoechea M.
        • de Vinuesa S.G.
        • Verdalles U.
        • et al.
        Effect of allopurinol in chronic kidney disease progression and cardiovascular risk.
        Clin J Am Soc Nephrol. 2010; 5: 1388-1393
        • Pai B.S.
        • Swarnalatha G.
        • Ram R.
        • Dakshinamurty K.V.
        Allopurinol for prevention of progression of kidney disease with hyperuricemia.
        Indian J Nephrol. 2013; 23: 280-286
        • Momeni A.
        • Shahidi S.
        • Seirafian S.
        • Taheri S.
        • Kheiri S.
        Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients.
        Iran J Kidney Dis. 2010; 4: 128-132
        • Kanbay M.
        • Ozkara A.
        • Selcoki Y.
        • et al.
        Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearance, and proteinuria in patients with normal renal functions.
        Int Urol Nephrol. 2007; 39: 1227-1233
        • Nakashima M.
        • Uematsu T.
        • Kosuge K.
        • Kanamaru M.
        Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects.
        Eur J Clin Pharmacol. 1992; 42: 333-335