Advertisement
American Journal of Kidney Diseases

Cholesterol Metabolism in CKD

Published:September 01, 2015DOI:https://doi.org/10.1053/j.ajkd.2015.06.028
      Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sarnak M.J.
        • Levey A.S.
        • Schoolwerth A.C.
        • et al.
        Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention.
        Hypertension. 2003; 42: 1050-1065
        • Chronic Kidney Disease Prognosis Consortium
        Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis.
        Lancet. 2010; 375: 2073-2081
        • Hemmelgarn B.R.
        • Manns B.J.
        • Lloyd A.
        • et al.
        • Alberta Kidney Disease Network
        Relation between kidney function, proteinuria, and adverse outcomes.
        JAMA. 2010; 303: 423-429
        • Manjunath G.
        • Tighiouart H.
        • Ibrahim H.
        • et al.
        Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community.
        J Am Coll Cardiol. 2003; 41: 47-55
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCullock C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Chonchol M.
        • Whittle J.
        • Desbien A.
        • Orner M.B.
        • Petersen L.A.
        • Kressin N.R.
        Chronic kidney disease is associated with angiographic coronary artery disease.
        Am J Nephrol. 2008; 28: 354-360
        • Sarnak M.J.
        • Coronado B.E.
        • Greene T.
        • et al.
        Cardiovascular disease risk factors in chronic renal insufficiency.
        Clin Nephrol. 2002; 57: 327-335
        • Zoccali C.
        Traditional and emerging cardiovascular and renal risk factors: an epidemiologic perspective.
        Kidney Int. 2006; 70: 26-33
        • Weiner D.E.
        • Tabatabai S.
        • Tighiouart H.
        • et al.
        Cardiovascular outcomes and all-cause mortality: exploring the interaction between CKD and cardiovascular disease.
        Am J Kidney Dis. 2006; 48: 392-401
        • Carrero J.J.
        • Stenvinkel P.
        Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal.
        Clin J Am Soc Nephrol. 2009; 4: S49-S55
        • Shik J.
        • Parfrey P.S.
        The clinical epidemiology of cardiac disease in chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2005; 14: 550-557
        • Menon V.
        • Gul A.
        • Sarnak M.J.
        Cardiovascular risk factors in chronic kidney disease.
        Kidney Int. 2005; 68: 1413-1418
        • Stenvinkel P.
        • Carrero J.J.
        • Axelsson J.
        • Lindholm B.
        • Heimburger O.
        • Massy Z.
        Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle?.
        Clin J Am Soc Nephrol. 2008; 3: 505-521
        • Malyszko J.
        Mechanism of endothelial dysfunction in chronic kidney disease.
        Clin Chim Acta. 2010; 411: 1412-1420
        • Stam F.
        • van Guldener C.
        • Becker A.
        • et al.
        Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn Study.
        J Am Soc Nephrol. 2006; 17: 537-545
        • Nakamura S.
        • Ishibashi-Ueda H.
        • Niizuma S.
        • Yoshihara F.
        • Horio T.
        • Kawano Y.
        Coronary calcification in patients with chronic kidney disease and coronary artery disease.
        Clin J Am Soc Nephrol. 2009; 4: 1892-1900
        • Nakano T.
        • Ninomiya T.
        • Sumiyoshi S.
        • et al.
        Association of kidney function with coronary atherosclerosis and calcification in autopsy samples from Japanese elders: the Hisayama Study.
        Am J Kidney Dis. 2010; 55: 21-30
        • Block G.A.
        • Raggi P.
        • Bellasi A.
        • Kooienga L.
        • Spiegel D.M.
        Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients.
        Kidney Int. 2007; 71: 438-441
        • Kato K.
        • Yonetsu T.
        • Jia H.
        • et al.
        Nonculprit coronary plaque characteristics of chronic kidney disease.
        Circ Cardiovasc Imaging. 2013; 6: 448-456
        • Schaeffner E.S.
        • Kurth T.
        • Curhan G.C.
        • et al.
        Cholesterol and the risk of renal dysfunction in apparently healthy men.
        J Am Soc Nephrol. 2003; 14: 2084-2091
        • Vaziri N.D.
        Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease.
        J Ren Nutr. 2010; 20: S35-S43
        • Vaziri N.D.
        Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences.
        Am J Physiol Renal Physiol. 2006; 290: F262-F272
        • Baigent C.
        • Landray M.J.
        • Reith C.
        • et al.
        • SHARP Investigators
        The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial.
        Lancet. 2011; 377: 2181-2192
        • Harbin M.
        • Amadio A.
        • Tejani A.
        Critical appraisal of the SHARP trial: the results may be dull.
        Clin Ther. 2014; 36: 2112-2117
        • Liu Y.
        • Coresh J.
        • Eustace J.A.
        • et al.
        Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition.
        JAMA. 2004; 291: 451-459
        • Chait A.
        • Brazg R.L.
        • Tribble D.L.
        • Krauss R.M.
        Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B.
        Am J Med. 1993; 94: 350-356
        • Kotani K.
        • Tsuzaki K.
        • Traniguchi N.
        • Sakane N.
        LDL particle size and reactive oxygen metabolites in dyslipidemic patients.
        Int J Prev Med. 2012; 3: 160-166
        • Tribble D.L.
        • Rizzo M.
        • Chait A.
        • Lewis D.M.
        • Blanche P.J.
        • Krauss R.M.
        Enhanced oxidative susceptibility and reduced antioxidant content of metabolic precursors of small, dense low-density lipoproteins.
        Am J Med. 2001; 110: 103-110
        • Kwiterovich Jr., P.O.
        Clinical relevance of the biochemical, metabolic, and genetic factors that influence low-density lipoprotein heterogeneity.
        Am J Cardiol. 2002; 90: 30i-47i
        • Gardner C.D.
        • Fortmann S.P.
        • Krauss R.M.
        Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women.
        JAMA. 1996; 276: 875-881
        • Galeano N.F.
        • Al-Haideri M.
        • Keyserman F.
        • Rumsey S.C.
        • Deckelbaum R.J.
        Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity.
        J Lipid Res. 1998; 39: 1263-1273
        • Williams P.T.
        • Superko H.R.
        • Haskell W.L.
        • et al.
        Smallest LDL particles are most strongly related to coronary disease progression in men.
        Arterioscler Thromb Vasc Biol. 2003; 23: 314-321
        • Williams P.T.
        • Zhao X.Q.
        • Marcovina S.M.
        • Otvos J.D.
        • Brown B.G.
        • Krauss R.M.
        Comparison of four methods of analysis of lipoprotein particle subfractions for their association with angiographic progression of coronary artery disease.
        Atherosclerosis. 2014; 233: 713-720
        • Shoji T.
        • Hatsuda S.
        • Tsuchikura S.
        • et al.
        Small dense low-density lipoprotein cholesterol concentration and carotid atherosclerosis.
        Atherosclerosis. 2009; 202: 582-588
        • Chu M.
        • Wang A.Y.
        • Chan I.H.
        • Chui S.H.
        • Lam C.W.
        Serum small-dense LDL abnormalities in chronic renal disease patients.
        Br J Biomed Sci. 2012; 69: 99-102
        • Deighan C.J.
        • Caslake M.J.
        • McConnell M.
        • Boulton-Jones J.M.
        • Packard C.J.
        The atherogenic lipoprotein phenotype: small dense LDL and lipoprotein remnants in nephrotic range proteinuria.
        Atherosclerosis. 2001; 157: 211-220
        • Ritz E.
        • Wanner C.
        Lipid changes and statins in chronic renal insufficiency.
        J Am Soc Nephrol. 2006; 17: S226-S230
        • Ginsberg H.N.
        • Le N.A.
        • Goldberg I.J.
        • et al.
        Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo.
        J Clin Invest. 1986; 78: 1287-1295
        • Mead J.R.
        • Irvine S.A.
        • Ramji D.P.
        Lipoprotein lipase: structure, function, regulation, and role in disease.
        J Mol Med (Berl). 2002; 80: 753-769
        • Nordestgaard B.G.
        • Tybjaerg-Hansen
        IDL, VLDL, chylomicrons and atherosclerosis.
        Eur J Epidemiol. 1992; 8: 92-98
        • Loscalzo J.
        Lipoprotein(a): a unique risk factor for atherothrombotic disease.
        Arteriosclerosis. 1990; 10: 672-679
        • Milionis H.J.
        • Elisaf M.S.
        • Tselepis A.
        • Bairaktari E.
        • Karabina S.A.
        • Siamopoulos K.C.
        Apolipoprotein(a) phenotypes and lipoprotein(a) concentrations in patients with renal failure.
        Am J Kidney Dis. 1999; 33: 1100-1106
        • Gaw A.
        • Boerwinkle E.
        • Cohen J.C.
        • Hobbs H.H.
        Comparative analysis of the apo(a) gene, apo(a) glycoprotein, and plasma concentrations of Lp(a) in three ethnic groups. Evidence for no common “null” allele at the apo(a) locus.
        J Clin Invest. 1994; 93: 2526-2534
        • Kronenberg F.
        • Kuen E.
        • Ritz E.
        • et al.
        Lipoprotein(a) serum concentrations and apolipoprotein(a) phenotypes in mild and moderate renal failure.
        J Am Soc Nephrol. 2000; 11: 105-115
        • Palmer S.C.
        • Navaneethan S.D.
        • Craig J.C.
        • et al.
        HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis.
        Cochrane Database Syst Rev. 2014; 5: CD007784
        • Rysz J.
        • Gluba-Brzózka A.
        • Banach M.
        • Więcek A.
        Should we use statins in all patients with chronic kidney disease without dialysis therapy? The current state of knowledge.
        Int Urol Nephrol. 2015; 47: 805-813
        • Chawla V.
        • Greene T.
        • Beck G.J.
        • et al.
        Hyperlipidemia and long-term outcomes in nondiabetic chronic kidney disease.
        Clin J Am Soc Nephrol. 2010; 5: 1582-1587
        • Shlipak M.G.
        • Fried L.F.
        • Cushman M.
        • et al.
        Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors.
        JAMA. 2005; 293: 1737-1745
        • Vaziri N.D.
        • Liang K.H.
        Hepatic HMG-CoA reductase gene expression during the course of puromycin-induced nephrosis.
        Kidney Int. 1995; 48: 1979-1985
        • Vaziri N.D.
        Molecular mechanisms of lipid disorders in nephrotic syndrome.
        Kidney Int. 2003; 63: 1964-1976
        • Rudel L.
        • Shelness G.
        Cholesterol esters and atherosclerosis—a game of ACAT and mouse.
        Nat Med. 2000; 6: 1313-1314
        • Vaziri N.D.
        • Liang K.H.
        Upregulation of acyl-coenzyme A: cholesterol acyltransferase (ACAT) in nephrotic syndrome.
        Kidney Int. 2002; 61: 1769-1775
        • Vaziri N.D.
        • Liang K.
        • Parks J.S.
        Down-regulation of hepatic lecithin:cholesterol acyltransferase gene expression in chronic renal failure.
        Kidney Int. 2001; 59: 2192-2196
        • Kunnen S.
        • Van Eck M.
        Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?.
        J Lipid Res. 2012; 53: 1783-1799
        • Guarnieri G.F.
        • Moracchiello M.
        • Campanacci L.
        • et al.
        Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia.
        Kidney Int Suppl. 1978; 8: S26-S30
        • Calabresi L.
        • Simonelli S.
        • Conca P.
        • et al.
        Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease.
        J Intern Med. 2015; 277: 552-561
        • Beddhu S.
        • Kimmel P.L.
        • Ramkumar N.
        • Cheung A.K.
        Associations of metabolic syndrome with inflammation in CKD: results from the Third National Health and Nutrition Examination Survey (NHANES III).
        Am J Kidney Dis. 2005; 46: 577-586
        • Navab K.D.
        • Elboudwarej O.
        • Gharif M.
        • et al.
        Chronic inflammatory disorders and accelerated atherosclerosis: chronic kidney disease.
        Curr Pharm Des. 2011; 7: 17-20
        • Fielding C.J.
        • Fielding P.E.
        Molecular physiology of reverse cholesterol transport.
        J Lipid Res. 1995; 36: 211-228
        • Voloshyna I.
        • Reiss A.B.
        The ABC transporters in lipid flux and atherosclerosis.
        Prog Lipid Res. 2011; 50: 213-224
        • Van Eck M.
        • Pennings M.
        • Hoekstra M.
        • Out R.
        • Van Berkel T.J.
        Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis.
        Curr Opin Lipidol. 2005; 16: 307-315
        • Bodzioch M.
        • Orsó E.
        • Klucken J.
        • et al.
        The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease.
        Nat Genet. 1999; 22: 347-351
        • Gelissen I.C.
        • Harris M.
        • Rye K.A.
        • et al.
        ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I.
        Arterioscler Thromb Vasc Biol. 2006; 26: 534-540
        • Wang X.
        • Collins H.L.
        • Ranalletta M.
        • et al.
        Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo.
        J Clin Invest. 2007; 117: 2216-2224
        • Mineo C.
        • Shaul P.W.
        Functions of scavenger receptor class B, type I in atherosclerosis.
        Curr Opin Lipidol. 2012; 23: 487-493
        • Barter P.J.
        • Brewer Jr., H.B.
        • Chapman M.J.
        • Hennekens C.H.
        • Rader D.J.
        • Tall A.R.
        Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2003; 23: 160-167
        • Kimura H.
        • Miyazaki R.
        • Imura T.
        • et al.
        Hepatic lipase mutation may reduce vascular disease prevalence in hemodialysis patients with high CETP levels.
        Kidney Int. 2003; 64: 1829-1837
        • Cardinal H.
        • Raymond M.A.
        • Hebert M.J.
        • Madore F.
        Uraemic plasma decreases the expression of ABCA1, ABCG1 and cell-cycle genes in human coronary arterial endothelial cells.
        Nephrol Dial Transplant. 2007; 22: 409-416
        • Attman P.O.
        • Alaupovic P.
        • Gustafson A.
        Serum apolipoprotein profile of patients with chronic renal failure.
        Kidney Int. 1987; 32: 368-375
        • Lo J.C.
        • Go A.S.
        • Chandra M.
        • Fan D.
        • Kaysen G.A.
        GFR, body mass index, and low high-density lipoprotein concentration in adults with and without CKD.
        Am J Kidney Dis. 2007; 50: 552-558
        • Rogacev K.S.
        • Zawada A.M.
        • Emrich I.
        • et al.
        Lower Apo A-I and lower HDL-C levels are associated with higher intermediate CD14++CD16+ monocyte counts that predict cardiovascular events in chronic kidney disease.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2120-2127
        • Feig J.E.
        • Shamir R.
        • Fisher E.A.
        Atheroprotective effects of HDL: beyond reverse cholesterol transport.
        Curr Drug Targets. 2008; 9: 196-203
        • Barter P.J.
        • Nicholls S.
        • Rye K.-A.
        • Anantharamaiah G.
        • Navab M.
        • Fogelman A.M.
        Anti-inflammatory properties of HDL.
        Circ Res. 2004; 95: 764-772
        • Rader D.J.
        Molecular regulation of HDL metabolism and function: implications for novel therapies.
        J Clin Invest. 2006; 116: 3090-3100
        • Boden W.E.
        • Probstfield J.L.
        • Anderson T.
        • et al.
        • AIM-HIGH Investigators
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N Engl J Med. 2011; 365: 2255-2267
        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • et al.
        Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study.
        Lancet. 2012; 380: 572-580
        • Dodani S.
        • Grice D.G.
        • Joshi S.
        Is HDL function as important as HDL quantity in the coronary artery disease risk assessment?.
        J Clin Lipidol. 2009; 3: 70-77
        • Kon V.
        • Ikizler T.A.
        • Fazio S.
        Importance of high-density lipoprotein quality: evidence from chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2013; 22: 259-265
        • Alabakovska S.B.
        • Todorova B.B.
        • Labudovic D.D.
        • Tosheska K.N.
        Related LDL and HDL subclass distribution in patients with end-stage renal diseases.
        Clin Biochem. 2002; 35: 211-216
        • Holzer M.
        • Birner-Gruenberger R.
        • Stojakovic T.
        • et al.
        Uremia alters HDL composition and function.
        J Am Soc Nephrol. 2011; 22: 1631-1641
        • Dirican M.
        • Akca R.
        • Sarandol E.
        • Dilek K.
        Serum paraoxonase activity in uremic predialysis and hemodialysis patients.
        J Nephrol. 2004; 17: 813-818
        • Dantoine T.F.
        • Debord J.
        • Charmes J.P.
        • et al.
        Decrease of serum paraoxonase activity in chronic renal failure.
        J Am Soc Nephrol. 1998; 9: 2082-2088
        • Weichhart T.
        • Kopecky C.
        • Kubicek M.
        • et al.
        Serum amyloid A in uremic HDL promotes inflammation.
        J Am Soc Nephrol. 2012; 23: 934-947
        • Malle E.
        • Marsche G.
        • Panzenboeck U.
        • Sattler W.
        Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins.
        Arch Biochem Biophys. 2006; 445: 245-255
        • Aviram M.
        • Rosenblat M.
        • Bisgaier C.L.
        • Newton R.S.
        • Primo-Parmo S.L.
        • La Du B.N.
        Paraoxonase inhibits high density lipoprotein (HDL) oxidation and preserves its functions: a possible peroxidative role for paraoxonase.
        J Clin Invest. 1998; 101: 1581-1590
        • Liu Y.
        • Mackness B.
        • Mackness M.
        Comparison of the ability of paraoxonases 1 and 3 to attenuate the in vitro oxidation of low-density lipoprotein and reduce macrophage oxidative stress.
        Free Radic Biol Med. 2008; 45: 743-748
        • Rosenblat M.
        • Vaya J.
        • Shih D.
        • Aviram M.
        Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine.
        Atherosclerosis. 2005; 179: 69-77
        • Rohatgi A.
        • Khera A.
        • Berry J.D.
        • et al.
        HDL cholesterol efflux capacity and incident cardiovascular events.
        N Engl J Med. 2014; 371: 2383-2393
        • Yamamoto S.
        • Yancey P.G.
        • Ikizler T.A.
        • et al.
        Dysfunctional high-density lipoprotein in patients on chronic hemodialysis.
        J Am Coll Cardiol. 2012; 60: 2372-2379
        • Deanfield J.E.
        • Halcox J.P.
        • Rabelink T.J.
        Endothelial function and dysfunction: testing and clinical relevance.
        Circulation. 2007; 115: 1285-1295
        • Besler C.
        • Heinrich K.
        • Rohrer L.
        • et al.
        Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease.
        J Clin Invest. 2011; 121: 2693-2708
        • Speer T.
        • Rohrer L.
        • Blyszczuk P.
        • et al.
        Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2.
        Immunity. 2013; 38: 754-768
        • Zewinger S.
        • Speer T.
        • Kleber M.E.
        • et al.
        HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction.
        J Am Soc Nephrol. 2014; 25: 1073-1082
        • Bonomini M.
        • Reale M.
        • Santarelli P.
        • et al.
        Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients.
        Nephron. 1998; 79: 399-407
        • Annuk M.
        • Fellström B.
        • Akerblom O.
        • Zilmer K.
        • Vihalemm T.
        • Zilmer M.
        Oxidative stress markers in pre-uremic patients.
        Clin Nephrol. 2001; 56: 308-314
        • Niwa T.
        Indoxyl sulfate is a nephro-vascular toxin.
        J Ren Nutr. 2010; 20: S2-S6
        • Barreto F.C.
        • Barreto D.V.
        • Liabeuf S.
        • et al.
        • European Uremic Toxin Work Group (EUTox)
        Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.
        Clin J Am Soc Nephrol. 2009; 4: 1551-1558
        • Tumur Z.
        • Shimizu H.
        • Enomoto A.
        • Miyazaki H.
        • Niwa T.
        Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation.
        Am J Nephrol. 2010; 31: 435-441
        • Dou L.
        • Bertrand E.
        • Cerini C.
        • et al.
        The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair.
        Kidney Int. 2004; 65: 442-451
        • Yamamoto H.
        • Tsuruoka S.
        • Ioka T.
        • et al.
        Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells.
        Kidney Int. 2006; 69: 1780-1785
        • Muteliefu G.
        • Enomoto A.
        • Niwa T.
        Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress.
        J Ren Nutr. 2009; 19: 29-32
        • Atamer A.
        • Kocyigit Y.
        • Ecder S.A.
        • et al.
        Effect of oxidative stress on antioxidant enzyme activities, homocysteine and lipoproteins in chronic kidney disease.
        J Nephrol. 2008; 21: 924-930
        • Amaki T.
        • Suzuki T.
        • Nakamura F.
        • et al.
        Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease.
        Heart. 2004; 90: 1211-1213
        • Ok E.
        • Basnakian A.G.
        • Apostolov E.O.
        • Barri Y.M.
        • Shah S.V.
        Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease.
        Kidney Int. 2005; 68: 173-178
        • Apostolov E.O.
        • Ray D.
        • Savenka A.V.
        • Shah S.V.
        • Basnakian A.G.
        Chronic uremia stimulates LDL carbamylation and atherosclerosis.
        J Am Soc Nephrol. 2010; 21: 1852-1857
        • Speer T.
        • Owala F.O.
        • Holy E.W.
        • et al.
        Carbamylated low-density lipoprotein induces endothelial dysfunction.
        Eur Heart J. 2014; 35: 3021-3032
        • Apostolov E.O.
        • Ray D.
        • Alobuia W.M.
        • et al.
        Endonuclease G mediates endothelial cell death induced by carbamylated LDL.
        Am J Physiol Heart Circ Physiol. 2011; 300: H1997-H2004
        • Asci G.
        • Basci A.
        • Shah S.V.
        • et al.
        Carbamylated low-density lipoprotein induces proliferation and increases adhesion molecule expression of human coronary artery smooth muscle cells.
        Nephrology (Carlton). 2008; 13: 480-486
        • Apostolov E.O.
        • Shah S.V.
        • Ok E.
        • Basnakian A.G.
        Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1.
        Arterioscler Thromb Vasc Biol. 2007; 27: 826-832
        • Hartmann B.
        • Czock D.
        • Keller F.
        Drug therapy in patients with chronic renal failure.
        Dtsch Arztebl Int. 2010; 107: 647-655
        • Wanner C.
        • Tonelli M.
        • Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members
        KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient.
        Kidney Int. 2014; 85: 1303-1309
        • Sarnak M.J.
        • Bloom R.
        • Muntner P.
        • et al.
        KDOQI US commentary on the 2013 KDIGO clinical practice guideline for lipid management in CKD.
        Am J Kidney Dis. 2015; 65: 354-366
        • Hou W.
        • Lv J.
        • Perkovic V.
        • et al.
        Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis.
        Eur Heart J. 2013; 34: 1807-1817
        • Strippoli G.F.
        • Navaneethan S.D.
        • Johnson D.W.
        • et al.
        Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials.
        BMJ. 2008; 336: 645-651
        • McCullough P.A.
        • Di Loreto M.J.
        Fibrates and cardiorenal outcomes.
        J Am Cardiol. 2012; 60: 2072-2073
        • Wu J.
        • Song Y.
        • Li H.
        • Chen J.
        Rhabdomyolysis associated with fibrate therapy: review of 76 published cases and a new case report.
        Eur J Clin Pharmacol. 2009; 65: 1169-1174
        • Ahmed M.H.
        Niacin as potential treatment for dyslipidemia and hyperphosphatemia associated with chronic renal failure: the need for clinical trials.
        Ren Fail. 2010; 32: 642-646
        • Kalil R.S.
        • Wang J.H.
        • de Boer I.H.
        • et al.
        Effect of extended-release niacin on cardiovascular events and kidney function in chronic kidney disease: a post hoc analysis of the AIM-HIGH trial.
        Kidney Int. 2015; 87: 1250-1257
        • Ricardo A.C.
        • Anderson C.A.
        • Yang W.
        • et al.
        • CRIC Study Investigators
        Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study.
        Am J Kidney Dis. 2015; 65: 412-424
        • Salmean Y.A.
        • Zello G.A.
        • Dahl W.J.
        Foods with added fiber improve stool frequency in individuals with chronic kidney disease with no impact on appetite or overall quality of life.
        BMC Res Notes. 2013; 6: 510
        • Voloshyna I.
        • Hai O.
        • Littlefield M.J.
        • Carsons S.
        • Reiss A.B.
        Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine.
        Eur J Pharmacol. 2013; 698: 299-309
        • Toklu H.Z.
        • Sehirli O.
        • Erşahin M.
        • et al.
        Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats.
        J Pharm Pharmacol. 2010; 62: 1784-1793
        • Cottart C.H.
        • Nivet-Antoine V.
        • Laguillier-Morizot C.
        • Beaudeux J.L.
        Resveratrol bioavailability and toxicity in humans.
        Mol Nutr Food Res. 2010; 54: 7-16
        • Zuo Y.
        • Yancey P.
        • Castro I.
        • et al.
        Renal dysfunction potentiates foam cell formation by repressing ABCA1.
        Arterioscler Thromb Vasc Biol. 2009; 29: 1277-1282
        • Ayodele O.E.
        • Alebiosu C.O.
        Burden of chronic kidney disease: an international perspective.
        Adv Chronic Kidney Dis. 2010; 17: 215-224
        • Tonelli M.
        • Muntner P.
        • Lloyd A.
        • et al.
        • Alberta Kidney Disease Network
        Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study.
        Lancet. 2012; 380: 807-814
        • Coresh J.
        • Selvin E.
        • Stevens L.A.
        • et al.
        Prevalence of chronic kidney disease in the United States.
        JAMA. 2007; 298: 2038-2047
        • Stenvinkel P.
        • Pecoits-Filho R.
        • Lindholm B.
        Coronary artery disease in end-stage renal disease: no longer a simple plumbing problem.
        J Am Soc Nephrol. 2003; 14: 1927-1939
        • Bansal N.
        Clinically silent myocardial infarctions in the CKD community.
        Nephrol Dial Transplant. 2012; 27: 3387-3391