Advertisement
American Journal of Kidney Diseases

HIV Infection, Tenofovir, and Urine α1-Microglobulin: A Cross-sectional Analysis in the Multicenter AIDS Cohort Study

      Background

      Tenofovir disoproxil fumarate (TDF) can cause proximal tubular damage and chronic kidney disease in human immunodeficiency virus (HIV)-infected individuals. Urine α1-microglobulin (A1M), a low-molecular-weight protein indicative of proximal tubular dysfunction, may enable earlier detection of TDF-associated tubular toxicity.

      Study Design

      Cross-sectional.

      Setting & Participants

      883 HIV-infected and 350 -uninfected men enrolled in the Multicenter AIDS Cohort Study.

      Predictors

      HIV infection and TDF exposure.

      Outcome

      Urine A1M level.

      Results

      Urine A1M was detectable in 737 (83%) HIV-infected and 202 (58%) -uninfected men (P < 0.001). Among HIV-infected participants, 573 (65%) were current TDF users and 112 (13%) were past TDF users. After multivariable adjustment including demographics, traditional kidney disease risk factors, and estimated glomerular filtration rate, HIV infection was associated with 136% (95% CI, 104%-173%) higher urine A1M levels and 1.5-fold (95% CI, 1.3- to 1.6-fold) prevalence of detectable A1M. When participants were stratified by TDF exposure, HIV infection was associated with higher adjusted A1M levels, by 164% (95% CI, 127%-208%) among current users, 124% (95% CI, 78%-183%) among past users, and 76% (95% CI, 45%-115%) among never users. Among HIV-infected participants, each year of cumulative TDF exposure was associated with 7.6% (95% CI, 5.4%-9.9%) higher A1M levels in fully adjusted models, a 4-fold effect size relative to advancing age (1.8% [95% CI, 0.9%-2.7%] per year). Each year since TDF treatment discontinuation was associated with 4.9% (95% CI, −9.4%-−0.2%) lower A1M levels among past users.

      Limitations

      Results may not be generalizable to women.

      Conclusions

      HIV-infected men had higher urine A1M levels compared with HIV-uninfected men. Among HIV-infected men, cumulative TDF exposure was associated with incrementally higher A1M levels, whereas time since TDF treatment discontinuation was associated with progressively lower A1M levels. Urine A1M appears to be a promising biomarker for detecting and monitoring TDF-associated tubular toxicity.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. AIDSinfo. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. http://aidsinfo.nih.gov/guidelines. Accessed April 29, 2016.

        • Aberg J.A.
        • Gallant J.E.
        • Ghanem K.G.
        • et al.
        Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America.
        Clin Infect Dis. 2014; 58: e1-e34
        • Grant R.M.
        • Lama J.R.
        • Anderson P.L.
        • et al.
        Preexposure chemoprophylaxis for HIV prevention in men who have sex with men.
        N Engl J Med. 2010; 363: 2587-2599
        • Thigpen M.C.
        • Kebaabetswe P.M.
        • Paxton L.A.
        • et al.
        Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana.
        N Engl J Med. 2012; 367: 423-434
        • Baeten J.M.
        • Donnell D.
        • Ndase P.
        • et al.
        Antiretroviral prophylaxis for HIV prevention in heterosexual men and women.
        N Engl J Med. 2012; 367: 399-410
        • Heathcote E.J.
        • Marcellin P.
        • Buti M.
        • et al.
        Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B.
        Gastroenterology. 2011; 140: 132-143
        • Marcellin P.
        • Gane E.
        • Buti M.
        • et al.
        Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study.
        Lancet. 2013; 381: 468-475
        • Barditch-Crovo P.
        • Deeks S.G.
        • Collier A.
        • et al.
        Phase I/II trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults.
        Antimicrob Agents Chemother. 2001; 45: 2733-2739
        • Bonjoch A.
        • Juega J.
        • Puig J.
        • et al.
        High prevalence of signs of renal damage despite normal renal function in a cohort of HIV-infected patients: evaluation of associated factors.
        AIDS Patient Care STDs. 2014; 28: 524-529
        • Flandre P.
        • Pugliese P.
        • Cuzin L.
        • et al.
        Risk factors of chronic kidney disease in HIV-infected patients.
        Clin J Am Soc Nephrol. 2011; 6: 1700-1707
        • Rifkin B.S.
        • Perazella M.A.
        Tenofovir-associated nephrotoxicity: Fanconi syndrome and renal failure.
        Am J Med. 2004; 117: 282-284
        • Hall A.M.
        • Hendry B.M.
        • Nitsch D.
        • Connolly J.O.
        Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence.
        Am J Kidney Dis. 2011; 57: 773-780
        • Scherzer R.
        • Estrella M.
        • Li Y.
        • et al.
        Association of tenofovir exposure with kidney disease risk in HIV infection.
        AIDS. 2012; 26: 867-875
        • Kohler J.J.
        • Hosseini S.H.
        • Hoying-Brandt A.
        • et al.
        Tenofovir renal toxicity targets mitochondria of renal proximal tubules.
        Lab Invest. 2009; 89: 513-519
        • Herlitz L.C.
        • Mohan S.
        • Stokes M.B.
        • Radhakrishnan J.
        • D'Agati V.D.
        • Markowitz G.S.
        Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities.
        Kidney Int. 2010; 78: 1171-1177
        • Ray A.S.
        • Cihlar T.
        • Robinson K.L.
        • et al.
        Mechanism of active renal tubular efflux of tenofovir.
        Antimicrob Agents Chemother. 2006; 50: 3297-3304
        • Cihlar T.
        • Ho E.S.
        • Lin D.C.
        • Mulato A.S.
        Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs.
        Nucleosides Nucleotides Nucleic Acids. 2001; 20: 641-648
        • Cihlar T.
        • Ray A.S.
        • Laflamme G.
        • et al.
        Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors.
        Antiviral Ther. 2007; 12: 267-272
        • Coca S.G.
        • Parikh C.R.
        Urinary biomarkers for acute kidney injury: perspectives on translation.
        Clin J Am Soc Nephrol. 2008; 3: 481-490
        • Kassirer J.P.
        Clinical evaluation of kidney function–glomerular function.
        N Engl J Med. 1971; 285: 385-389
        • Akerstrom B.
        • Logdberg L.
        • Berggard T.
        • Osmark P.
        • Lindqvist A.
        alpha(1)-Microglobulin: a yellow-brown lipocalin.
        Biochim Biophys Acta. 2000; 1482: 172-184
        • Weber M.H.
        • Verwiebe R.
        Alpha 1-microglobulin (protein HC): features of a promising indicator of proximal tubular dysfunction.
        Eur J Clin Chem Clin Biochem. 1992; 30: 683-691
        • Jotwani V.
        • Scherzer R.
        • Abraham A.
        • et al.
        Association of urine alpha1-microglobulin with kidney function decline and mortality in HIV-infected women.
        Clin J Am Soc Nephrol. 2015; 10: 63-73
        • Kaslow R.A.
        • Ostrow D.G.
        • Detels R.
        • Phair J.P.
        • Polk B.F.
        • Rinaldo Jr., C.R.
        The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants.
        Am J Epidemiol. 1987; 126: 310-318
      2. Centers for Disease Control. The 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults.
        MMWR Morb Mortal Wkly Rep. 1993; 41: 1-19
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
        • Gilks W.R.
        • Richardson S.
        • Spiegehalter D.J.
        Markov Chain Monte Carlo in Practice.
        Chapman & Hall, London, England1996
        • Zou G.
        A modified Poisson regression approach to prospective studies with binary data.
        Am J Epidemiol. 2004; 159: 702-706
        • Hoeting J.
        • Raftery A.
        • Volinsky C.
        Bayesian model averaging: a tutorial.
        Stat Sci. 1999; 14: 382-401
        • Tibshirani R.
        Regression shrinkage and selection via the lasso.
        J R Stat Soc B. 1996; 58: 267-288
        • Ekstrom B.
        • Peterson P.A.
        • Berggard I.
        A urinary and plasma alpha1-glycoprotein of low molecular weight: isolation and some properties.
        Biochem Biophys Res Commun. 1975; 65: 1427-1433
        • Leheste J.R.
        • Rolinski B.
        • Vorum H.
        • et al.
        Megalin knockout mice as an animal model of low molecular weight proteinuria.
        Am J Pathol. 1999; 155: 1361-1370
        • Strober W.
        • Waldmann T.A.
        The role of the kidney in the metabolism of plasma proteins.
        Nephron. 1974; 13: 35-66
        • Christensen E.I.
        • Nielsen S.
        Structural and functional features of protein handling in the kidney proximal tubule.
        Semin Nephrol. 1991; 11: 414-439
        • Wu Y.
        • Yang L.
        • Su T.
        • Wang C.
        • Liu G.
        • Li X.M.
        Pathological significance of a panel of urinary biomarkers in patients with drug-induced tubulointerstitial nephritis.
        Clin J Am Soc Nephrol. 2010; 5: 1954-1959
        • Devarajan P.
        • Krawczeski C.D.
        • Nguyen M.T.
        • Kathman T.
        • Wang Z.
        • Parikh C.R.
        Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children.
        Am J Kidney Dis. 2010; 56: 632-642
        • Nishijima T.
        • Shimbo T.
        • Komatsu H.
        • et al.
        Urinary beta-2 microglobulin and alpha-1 microglobulin are useful screening markers for tenofovir-induced kidney tubulopathy in patients with HIV-1 infection: a diagnostic accuracy study.
        J Infect Chemother. 2013; 19: 850-857
        • Labarga P.
        • Barreiro P.
        • Martin-Carbonero L.
        • et al.
        Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir.
        AIDS. 2009; 23: 689-696
        • Hall A.M.
        • Edwards S.G.
        • Lapsley M.
        • et al.
        Subclinical tubular injury in HIV-infected individuals on antiretroviral therapy: a cross-sectional analysis.
        Am J Kidney Dis. 2009; 54: 1034-1042
        • Mwafongo A.
        • Nkanaunena K.
        • Zheng Y.
        • et al.
        Renal events among women treated with tenofovir/emtricitabine in combination with either lopinavir/ritonavir or nevirapine.
        AIDS. 2014; 28: 1135-1142
        • Kiser J.J.
        • Carten M.L.
        • Aquilante C.L.
        • et al.
        The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients.
        Clin Pharmacol Ther. 2008; 83: 265-272
        • Kearney B.P.
        • Mathias A.
        • Mittan A.
        • Sayre J.
        • Ebrahimi R.
        • Cheng A.K.
        Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir.
        J Acq Immune Defic Syndr. 2006; 43: 278-283
        • Tong L.
        • Phan T.K.
        • Robinson K.L.
        • et al.
        Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro.
        Antimicrob Agents Chemother. 2007; 51: 3498-3504
        • Vishnuvardhan D.
        • Moltke L.L.
        • Richert C.
        • Greenblatt D.J.
        Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein.
        AIDS. 2003; 17: 1092-1094
        • Washington C.B.
        • Duran G.E.
        • Man M.C.
        • Sikic B.I.
        • Blaschke T.F.
        Interaction of anti-HIV protease inhibitors with the multidrug transporter P-glycoprotein (P-gp) in human cultured cells.
        J Acq Immune Defic Syndr Hum Retrovirol. 1998; 19: 203-209
        • Choi A.I.
        • Rodriguez R.A.
        • Bacchetti P.
        • Bertenthal D.
        • Volberding P.A.
        • O'Hare A.M.
        The impact of HIV on chronic kidney disease outcomes.
        Kidney Int. 2007; 72: 1380-1387
        • Lucas G.M.
        • Lau B.
        • Atta M.G.
        • Fine D.M.
        • Keruly J.
        • Moore R.D.
        Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races.
        J Infect Dis. 2008; 197: 1548-1557
        • Jotwani V.
        • Li Y.
        • Grunfeld C.
        • Choi A.I.
        • Shlipak M.
        Risk factors for end-stage renal disease in HIV-infected individuals: traditional and HIV-related factors.
        Am J Kidney Dis. 2012; 59: 628-635
        • Genovese G.
        • Friedman D.J.
        • Ross M.D.
        • et al.
        Association of trypanolytic ApoL1 variants with kidney disease in African Americans.
        Science. 2010; 329: 841-845
        • Tzur S.
        • Rosset S.
        • Shemer R.
        • et al.
        Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene.
        Hum Genet. 2010; 128: 345-350
        • Peralta C.A.
        • Bibbins-Domingo K.
        • Vittinghoff E.
        • et al.
        APOL1 genotype and race differences in incident albuminuria and renal function decline.
        J Am Soc Nephrol. 2016; 27: 887-893
        • Jotwani V.
        • Shlipak M.G.
        • Scherzer R.
        • et al.
        APOL1 genotype and glomerular and tubular kidney injury in women with HIV.
        Am J Kidney Dis. 2015; 65: 889-898