Advertisement
American Journal of Kidney Diseases

HLA Epitope Matching in Kidney Transplantation: An Overview for the General Nephrologist

  • Matthew Sypek
    Correspondence
    Address for Correspondence: Matthew Sypek, MBBS, Department of Nephrology, Royal Melbourne Hospital, Grattan St, Parkville, Victoria, Australia 3050.
    Affiliations
    Department of Nephrology, Royal Melbourne Hospital, Melbourne, Australia

    The University of Melbourne, Melbourne, Australia

    Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
    Search for articles by this author
  • Joshua Kausman
    Affiliations
    Department of Nephrology, Royal Melbourne Hospital, Melbourne, Australia

    The University of Melbourne, Melbourne, Australia

    Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
    Search for articles by this author
  • Steve Holt
    Affiliations
    Department of Nephrology, Royal Melbourne Hospital, Melbourne, Australia

    The University of Melbourne, Melbourne, Australia
    Search for articles by this author
  • Peter Hughes
    Affiliations
    Department of Nephrology, Royal Melbourne Hospital, Melbourne, Australia

    The University of Melbourne, Melbourne, Australia
    Search for articles by this author
Published:December 12, 2017DOI:https://doi.org/10.1053/j.ajkd.2017.09.021
      Rapid changes in tissue-typing technology, including the widespread availability of highly specific molecular typing methods and solid-phase assays for the detection of allele-specific anti-HLA antibodies, make it increasingly challenging to remain up to date with developments in organ matching. Terms such as epitopes and eplets abound in the transplantation literature, but often it can be difficult to see what they might mean for the patient awaiting transplantation. In this review, we provide the historical context for current practice in tissue typing and explore the potential role of HLA epitopes in kidney transplantation. Despite impressive gains in preventing and managing T-cell–mediated rejection and the associated improvements in graft survival, the challenge of the humoral alloresponse remains largely unmet and is the major cause of late graft loss. Describing HLA antigens as a series of antibody targets, or epitopes, rather than based on broad seroreactivity patterns or precise amino acid sequences may provide a more practical and clinically relevant system to help avoid antibody-mediated rejection, reduce sensitization, and select the most appropriate organs in the setting of pre-existing alloantibodies. We explain the systems proposed to define HLA epitopes, summarize the evidence to date for their role in transplantation, and explore the potential benefits of incorporating HLA epitopes into clinical practice as this field continues to evolve toward everyday practice.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Duquesnoy R.J.
        Should epitope-based HLA compatibility be used in the kidney allocation system?.
        Hum Immunol. 2017; 78: 24-29
        • Picascia A.
        • Grimaldi V.
        • Napoli C.
        From HLA typing to anti-HLA antibody detection and beyond: the road ahead.
        Transplant Rev. 2016; 30: 187-194
        • Tambur A.R.
        Auto- and allo-epitopes in DQ alloreactive antibodies.
        Curr Opin Organ Transplant. 2016; 21: 355-361
        • Wiebe C.
        • Nickerson P.
        Strategic use of epitope matching to improve outcomes.
        Transplantation. 2016; 100: 2048-2052
        • Tambur A.R.
        • Claas F.H.J.
        HLA epitopes as viewed by antibodies: what is it all about?.
        Am J Transplant. 2015; 15: 1148-1154
        • Filippone E.J.
        • Farber J.L.
        Humoral immunity in renal transplantation: epitopes, Cw and DP, and complement-activating capability - an update.
        Clin Transplant. 2015; 29: 279-287
        • Duquesnoy R.J.
        Human leukocyte antigen epitope antigenicity and immunogenicity.
        Curr Opin Organ Transplant. 2014; 19: 428-435
        • Tait B.D.
        • Hudson F.
        • Brewin G.
        • Cantwell L.
        • Holdsworth R.
        Solid phase HLA antibody detection technology – challenges in interpretation.
        Tissue Antigens. 2010; 76: 87-95
        • Gebel H.M.
        • Bray R.A.
        HLA antibody detection with solid phase assays: great expectations or expectations too great?.
        Am J Transplant. 2014; 14: 1964-1975
        • Little C.C.
        • Tyzzer E.E.
        Further experimental studies on the inheritance of susceptibility to a transplantable tumor, carcinoma (J. W. A.) of the Japanese waltzing mouse.
        J Med Res. 1916; 33: 393-453
        • Gorer P.
        • Lyman S.
        • Snell G.
        Studies on the genetic and antigenic basis of tumour transplantation. Linkage between a histocompatibility gene and “fused” in mice.
        Proc R Soc Ser B. 1948; 135: 499-505
        • Merrill J.
        • Murray J.
        • Harrison J.
        • Guild W.
        Successful homotransplantation of the human kidney between identical twins.
        J Am Med Assoc. 1956; 160: 277-282
        • Dausset J.
        Iso-leuco-anticorps.
        Acta Haematol. 1958; 20: 156-166
        • Payne R.
        • Rolfs M.
        Fetomaternal leukocyte incompatibility.
        J Clin Invest. 1958; 37: 1756-1763
        • van Rood J.
        • van Leeuwen A.
        Leukocyte grouping. A method and its application.
        J Clin Invest. 1963; 42: 1382-1390
        • Thorsby E.
        A short history of HLA.
        Tissue Antigens. 2009; 74: 101-116
        • Bodmer W.
        • Bodmer J.
        • Adler S.
        • Payne R.
        • Bialek J.
        Genetics of “4” and “LA” human leukocyte groups.
        Ann N Y Acad Sci. 1966; 129: 473-489
        • Solheim B.G.
        • Bratlie A.
        • Sandberg L.
        • Staub-Nielsen L.
        • Thorsby E.
        Further evidence of a third HL-A locus.
        Tissue Antigens. 1973; 3: 439-453
        • Thorsby E.
        • Piazza A.
        Histocompatibility Testing 1975: Joint Report From the Sixth International Histocompatibilityworkshop Conference. II. Typing for HLA-D (LD-1 or MLC) Determinants. Histocompatibility Testing.
        Munksgaard, Copenhagen, Denmark1975: 414-458
      1. Bodmer W. Histocompatibility Testing 1977: Report of the 7th International Histocompatibility Workshop and Conference. Munksgaard, Copenhagen, Denmark1978
        • Sood A.
        • Pereira D.
        • Weissman S.M.
        Isolation and partial nucleotide sequence of a cDNA clone for human histocompatibility antigen HLA-B by use of an oligodeoxynucleotide primer.
        Proc Natl Acad Sci U S A. 1981; 78: 616-620
        • Morel C.
        • Zwahlen F.
        • Jeannet M.
        • Mach B.
        • Tiercy J.M.
        Complete analysis of HLA-DQB1 polymorphism and DR-DQ linkage disequilibrium by oligonucleotide typing.
        Hum Immunol. 1990; 29: 64-77
        • Wordsworth B.
        • Allsopp C.
        • Young R.
        • Bell J.
        HLA-DR typing using DNA amplification by the polymerase chain reaction and sequential hybridization to sequence-specific oligonucleotide probes.
        Immunogenetics. 1990; 32: 413-418
        • Dunckley H.
        HLA typing by SSO and SSP methods.
        Methods Mol Biol. 2012; 882: 9-25
        • Olerup O.
        • Zetterquist H.
        HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation.
        Tissue Antigens. 1992; 39: 225-235
        • Olerup O.
        • Zetterquist H.
        HLA-DRB1*01 subtying by allele-specific PCR amplification: a sensitive, specific and rapid technique.
        Tissue Antigens. 1991; 37: 197-204
        • Erlich H.
        HLA DNA typing: past, present, and future.
        Tissue Antigens. 2012; 80: 1-11
        • Shendure J.
        • Porreca G.J.
        • Reppas N.B.
        • et al.
        Accurate multiplex polony sequencing of an evolved bacterial genome.
        Science. 2005; 309: 1728-1732
        • Margulies M.
        • Egholm M.
        • Altman W.E.
        • et al.
        Genome sequencing in microfabricated high-density picolitre reactors.
        Nature. 2005; 437: 376-380
      2. Anthony Nolan Research Institute. HLA Nomenclature: HLA Alleles Numbers. http://hla.alleles.org/nomenclature/stats.html. Accessed May 23, 2017.

        • Park I.
        • Terasaki P.
        Origins of the first HLA specificities.
        Hum Immunol. 2000; 61: 185-189
        • Terasaki P.I.
        • Mickey M.R.
        • Vredevoe D.L.
        • Goyette D.R.
        Serotyping for homotransplantation IV grouping and evaluation of lymphotoxic sera.
        Vox Sang. 1966; 11: 350-376
        • Walford R.L.
        • Qallance O.
        • Shanbrom E.
        • Troop G.M.
        Lc-11 (Hunt B, Jones) as a mutually exclusive specificity to Lc-1, 2, and 3 in the main human leukocyte group.
        Vox Sang. 1968; 15: 338-344
        • Amos B.D.B.
        • Bach F.H.
        Phenotypic expressions of the major histocompatibility locus in man (HL-A): leukocyte antigens and mixed leukocyte culture reactivity.
        J Exp Med. 1968; 128: 623-637
      3. Gotze D. The Major Histocompatibility System in Man and Animals. Springer-Verlag, Berlin, Germany1979: 7-25
      4. Anthony Nolan Research Institute. HLA Nomenclature: Nomenclature for Factors of the HLA System. 2016. http://www.hla.alleles.org/nomenclature/naming.html. Accessed December 20, 2016.

        • Solhiem B.
        • Ferrone S.
        • Moller E.
        The HLA System in Clinical Transplantation: Basic Concepts and Importance.
        Springer, Berlin, Germany1993
        • Erlich H.A.
        • Opelz G.
        • Hansen J.
        HLA DNA typing and transplantation.
        Immunity. 2001; 14: 347-356
        • Doxiadis G.G.M.
        • Hoof I.
        • De Groot N.
        • Bontrop R.E.
        Evolution of HLA-DRB genes.
        Mol Biol Evol. 2012; 29: 3843-3853
        • Terasaki P.I.
        • Vredevoe D.L.
        • Porter K.A.
        • et al.
        Serotyping for homotransplantation. V. Evaluation of a matching scheme.
        Transplantation. 1966; 4: 688-699
        • Kissmeyer-Nielesen F.
        The HL-A system and renal transplantation.
        Tissue Antigens. 1971; 1: 53-56
        • Mickey M.
        • Kreisler M.
        • Albert E.
        • Tanaka N.
        • Terasaki P.
        Analysis of HL-A incompatibility in human renal transplants.
        Tissue Antigens. 1971; 1: 57-67
        • Ting A.
        • Morris P.
        Matching for B-cell antigens of the HLA-DR series in cadaver renal transplantation.
        Lancet. 1978; 311: 575-577
        • Persijn G.
        • Gabb B.
        • van Leeuwen A.
        • Nagtegaal A.
        • Hoogeboom J.
        • van Rood J.
        Matching for HLA antigens of A, B, and DR loci in renal transplantation by Eurotransplant.
        Lancet. 1978; 311: 1278-1281
        • Williams R.C.
        • Opelz G.
        • Mcgarvey C.J.
        • Weil E.J.
        • Chakkera H.A.
        The risk of transplant failure with HLA mismatch in first adult kidney allografts from deceased donors.
        Transplantation. 2016; : 1094-1102
      5. OPTN. Allocation of kidneys (OPTN). 2017. https://optn.transplant.hrsa.gov/media/1200/optn_policies.pdf#nameddest=Policy_08. Accessed May 20, 2017.

      6. NHSBT. Kidney transplantation: deceased donor organ allocation. 2017. http://www.odt.nhs.uk/pdf/kidney_allocation_policy.pdf. Accessed May 16, 2017.

        • El-Awar N.
        • Terasaki P.
        • Cai J.
        • et al.
        Epitopes of HLA-A, B, C, DR, DQ, DP nad MICA Antigens.
        in: Clinical Transplants 2009. Terasaki Foundation Laboratory, Los Angeles, CA2009: 195-321
      7. TSANZ. Clinical guidelines for organ transplantation from deceased donors. 2017. https://www.tsanz.com.au/organallocationguidelines/documents/ClinicalGuidelinesV1.1May2017.pdf. Accessed May 16, 2017.

        • Roberts D.M.
        • Jiang S.H.
        • Chadban S.J.
        The treatment of acute antibody-mediated rejection in kidney transplant recipients-a systematic review.
        Transplantation. 2012; 94: 775-783
        • Arias M.
        • Rush D.N.
        • Wiebe C.
        • et al.
        Antibody-mediated rejection.
        Transplantation. 2014; 98: S3-S21
        • Sellarés J.
        • De Freitas D.G.
        • Mengel M.
        • et al.
        Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence.
        Am J Transplant. 2012; 12: 388-399
        • Gaston R.S.
        • Cecka J.M.
        • Kasiske B.L.
        • et al.
        Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure.
        Transplantation. 2010; 90: 68-74
        • Einecke G.
        • Sis B.
        • Reeve J.
        • et al.
        Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure.
        Am J Transplant. 2009; 9: 2520-2531
        • Kosmoliaptsis V.
        • Gjorgjimajkoska O.
        • Sharples L.D.
        • et al.
        Impact of donor mismatches at individual HLA-A, -B, -C, -DR, and -DQ loci on the development of HLA-specific antibodies in patients listed for repeat renal transplantation.
        Kidney Int. 2014; 86: 1-10
        • Hourmant M.
        Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation.
        J Am Soc Nephrol. 2005; 16: 2804-2812
        • Wiebe C.
        • Gibson I.W.
        • Blydt-Hansen T.D.
        • et al.
        Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant.
        Am J Transplant. 2012; 12: 1157-1167
        • Everly M.J.
        • Rebellato L.M.
        • Haisch C.E.
        • et al.
        Incidence and impact of de novo donor-specific alloantibody in primary renal allografts.
        Transplantation. 2013; 95: 410-417
        • DeVos J.M.
        • Gaber A.O.
        • Knight R.J.
        • et al.
        Donor-specific HLA-DQ antibodies may contribute to poor graft outcome after renal transplantation.
        Kidney Int. 2012; 82: 598-604
        • Jolly E.C.
        • Key T.
        • Rasheed H.
        • et al.
        Preformed donor HLA-DP-specific antibodies mediate acute and chronic antibody-mediated rejection following renal transplantation.
        Am J Transplant. 2012; 12: 2845-2848
        • Aubert O.
        • Bories M.C.
        • Suberbielle C.
        • et al.
        Risk of antibody-mediated rejection in kidney transplant recipients with anti-HLA-C donor-specific antibodies.
        Am J Transplant. 2014; 14: 1439-1445
        • Aubert O.
        • Loupy A.
        • Hidalgo L.
        • et al.
        Antibody-mediated rejection due to preexisting versus de novo donor-specific antibodies in kidney allograft recipients.
        J Am Soc Nephrol. 2017; 28: 1912-1923
        • Cecka J.M.
        Calculated PRA (cPRA): the new measure of sensitization for transplant candidates: special feature.
        Am J Transplant. 2010; 10: 26-29
        • Daniëls L.
        • Emonds M.-P.
        • Bosmans J.-L.
        • Marrari M.
        • Duquesnoy R.J.
        Epitope analysis of DQ6-reactive antibodies in sera from a DQ6-positive transplant candidate sensitized during pregnancy.
        Transpl Immunol. 2016; 38: 15-18
        • Duquesnoy R.J.
        • Kamoun M.
        • Baxter-Lowe L.A.
        • et al.
        Should HLA mismatch acceptability for sensitized transplant candidates be determined at the high-resolution rather than the antigen level?.
        Am J Transplant. 2015; 15: 923-930
        • Janeway C.
        • Travers P.
        • Walport M.
        • Shlomchik M.
        Antigen Recognition by B-cell and T-cell Rec.
        in: Janeway’s Immunobiology. 5th ed. Garland Publishing, New York2001: 114-148
        • Van Regenmortel M.H.
        What is a B-cell epitope?.
        Methods Mol Biol. 2009; 524: 3-20
        • Sela-Culang I.
        • Ofran Y.
        • Peters B.
        Antibody specific epitope prediction - emergence of a new paradigm.
        Curr Opin Virol. 2015; 11: 98-102
        • Stave J.W.
        • Lindpaintner K.
        Antibody and antigen contact residues define epitope and paratope size and structure.
        J Immunol. 2013; 191: 1428-1435
        • Claas F.H.J.
        Allo-antibodies to an antigenic determinant shared by HLA-A2 and B17.
        Tissue Antigens. 1982; 19: 388-391
        • Schwartz B.D.
        • Luehrman L.K.
        • Rodey G.E.
        • Howard T.
        Public antigenic determinant family of HLA-B molecules.
        J Clin Invest. 1979; 64: 938-947
        • Fuller A.A.
        • Rodey G.E.
        • Parham P.
        • Fuller T.C.
        Epitope map of the HLA-B7 CREG using affinity-purified human alloantibody probes.
        Hum Immunol. 1990; 28: 306-325
        • Starzl T.E.
        • Eliasziw M.
        • Gjertson D.
        • et al.
        HLA and cross-reactive antigen group matching for cadaver kidney allocation.
        Transplantation. 1997; 64: 983-991
        • Davies D.R.
        • Pasien E.A.
        • Sheriff S.
        Antibody -antigen complexes 1.
        Annu Rev Biochem. 1990; 59: 439-473
        • MacCallum R.M.
        • Martin A.C.
        • Thornton J.M.
        Antibody-antigen interactions: contact analysis and binding site topography.
        J Mol Biol. 1996; 262: 732-745
        • Cunningham B.C.
        • Wells J.A.
        Comparison of a structural and a functional epitope.
        J Mol Biol. 1993; 234: 554-563
        • Duquesnoy R.J.
        A structurally based approach to determine HLA compatibility at the humoral immune level.
        Hum Immunol. 2006; 67: 847-862
        • Sypek M.P.
        • Hughes P.
        • Kausman J.Y.
        HLA epitope matching in pediatric renal transplantation.
        Pediatr Nephrol. 2017; 32: 1861-1869
        • Wang Y.
        • Geer L.
        • Chappey C.
        • Kans J.
        • Bryant S.
        Cn3D: sequence and structure views for Entrez.
        Trends Biochem Sci. 2000; 25: 300-302
      8. HLA Epitope Registry. http://epregistry.ufpi.br/index/databases/database/ABC/. Accessed October 24, 2016.

        • Duquesnoy R.J.
        • Marrari M.
        Correlations between Terasaki’s HLA class I epitopes and HLAMatchmaker-defined eplets on HLA-A, -B and -C antigens.
        Tissue Antigens. 2009; 74: 117-133
        • Lobashevsky A.L.
        • Senkbeil R.W.
        • Shoaf J.L.
        • et al.
        The number of amino acid residues mismatches correlates with flow cytometry crossmatching results in high PRA renal patients.
        Human Immunology. 2002; 65: 364-374
        • Nielsen M.
        • Lund O.
        NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
        BMC Bioinform. 2009; 10: 296
        • Heidt S.
        • Witvliet M.D.
        • Haasnoot G.W.
        • Claas F.H.J.
        The 25th anniversary of the Eurotransplant Acceptable Mismatch program for highly sensitized patients.
        Transpl Immunol. 2015; 33: 51-57
        • Duquesnoy R.J.
        • Takemoto S.
        • de Lange P.
        • et al.
        HLAmatchmaker: a molecularly based algorithm for histocompatibility determination. III. Effect of matching at the HLA-A, B amino acid triplet level on kidney transplant survival.
        Transplantation. 2003; 75: 884-889
        • Duquesnoy R.J.
        Structural epitope matching for HLA alloimmunized thrombocytopenic patients: a new strategy to provide more effective platelet transfusion support?.
        Transfusion. 2008; 48: 221-227
        • Yankee R.
        • Grumet F.
        • Rogentine G.
        Platelet transfusion therapy.
        N Engl J Med. 1969; 281: 1208-1212
        • Duquesnoy R.J.
        • Filip D.J.
        • Rodey G.E.
        • Rimm A.A.
        • Aster R.H.
        Successful transfusion of platelets “mismatched” for HLA antigens to alloimmunized thrombocytopenic patients.
        Am J Hematol. 1977; 2: 219-226
        • Nambiar A.
        • Duquesnoy R.
        • Adams S.
        • et al.
        HLAMatchmaker-driven analysis of responses to HLA typed platelet transfusions in alloimmunized thrombocytopenic patients.
        Blood. 2006; 107: 1680-1687
        • Brooks E.
        • MacPherson B.
        • Fung M.
        Validation of HLAMatchmaker algorithm in identifying refractory to platelet transfusions.
        Transfusion. 2008; 48: 2159-2166
        • Murphy M.F.
        • Gill R.
        • Moss R.
        • et al.
        Spotlight on platelets: summary of BBTS combined special interest group autumn meeting, November 2015.
        Tranfusion Med. 2016; 26: 8-14
        • Dankers M.K.A.
        • Witvliet M.D.
        • Roelen D.L.
        • et al.
        The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens.
        Transplantation. 2004; 77: 1236-1239
        • Wiebe C.
        • Pochinco D.
        • Blydt-Hansen T.D.
        • et al.
        Class II HLA epitope matching - a strategy to minimize de novo donor-specific antibody development and improve outcomes.
        Am J Transplant. 2013; 13: 3114-3122
        • Wiebe C.
        • Nevins T.E.
        • Robiner W.N.
        • Thomas W.
        • Matas A.J.
        • Nickerson P.W.
        The synergistic effect of class II HLA epitope-mismatch and nonadherence on acute rejection and graft survival.
        Am J Transplant. 2015; 15: 2197-2202
        • Kosmoliaptsis V.
        • Mallon D.H.
        • Chen Y.
        • Bolton E.M.
        • Bradley A.J.
        • Taylor C.J.
        Alloantibody responses after renal transplant failure can be better predicted by donor-recipient HLA amino acid sequence and physicochemical disparities than conventional HLA matching.
        Am J Transplant. 2016; 16: 2139-2147
        • Singh P.
        • Filippone E.J.
        • Colombe B.W.
        • et al.
        Sensitization trends after renal allograft failure: the role of DQ eplet mismatches in becoming highly sensitized.
        Clin Transplant. 2016; 30: 71-80
        • Sapir-Pichhadze R.
        • Tinckam K.
        • Quach K.
        • et al.
        HLA-DR and -DQ eplet mismatches and transplant glomerulopathy: a nested case-control study.
        Am J Transplant. 2015; 15: 137-148
        • Walton D.C.
        • Hiho S.J.
        • Cantwell L.S.
        • et al.
        HLA matching at the eplet level protects against chronic lung allograft dysfunction.
        Am J Transplant. 2016; 16: 2695-2703
        • Sullivan P.M.
        • Warner P.
        • Kemna M.S.
        • et al.
        HLA molecular epitope mismatching and long-term graft loss in pediatric heart transplant recipients.
        J Heart Lung Transplant. 2015; 34: 950-957
        • Bryan C.F.
        • Chadha V.
        • Warady B.A.
        Donor selection in pediatric kidney transplantation using DR and DQ eplet mismatching: a new histocompatibility paradigm.
        Pediatr Transplant. 2016; 20: 926-930
        • Kausman J.Y.
        • Walker A.M.
        • Cantwell L.S.
        • Quinlan C.
        • Sypek M.P.
        • Ierino F.L.
        Application of an epitope-based allocation system in pediatric kidney transplantation.
        Pediatr Transplant. 2016; 20: 931-938
        • Sypek M.
        • Alexander S.
        • Cantwell L.
        • et al.
        Optimizing outcomes in pediatric renal transplantation through the Australian paired kidney exchange program.
        Am J Transplant. 2017; 17: 534-541
        • Ferrari P.
        • Cantwell L.
        • Ta J.
        • Woodroffe C.
        • D’Orsogna L.
        • Holdsworth R.
        Providing better-matched donors for HLA mismatched compatible pairs through kidney paired donation.
        Transplantation. 2017; 101: 642-648
        • Tambur A.R.
        • Claas F.H.J.
        Toward HLA epitope matching in clinical transplantation.
        Am J Transplant. 2013; 13: 3059-3060
      9. The 17th International HLA & Immunogenetics Workshop. Mapping of Serologic Epitopes. http://ihiws.org/mapping-of-serologic-epitopes/. Accessed November 11, 2016.