Advertisement
American Journal of Kidney Diseases

Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation

Published:February 26, 2018DOI:https://doi.org/10.1053/j.ajkd.2017.12.009
      Urate is a cause of gout, kidney stones, and acute kidney injury from tumor lysis syndrome, but its relationship to kidney disease, cardiovascular disease, and diabetes remains controversial. A scientific workshop organized by the National Kidney Foundation was held in September 2016 to review current evidence. Cell culture studies and animal models suggest that elevated serum urate concentrations can contribute to kidney disease, hypertension, and metabolic syndrome. Epidemiologic evidence also supports elevated serum urate concentrations as a risk factor for the development of kidney disease, hypertension, and diabetes, but differences in methodologies and inpacts on serum urate concentrations by even subtle changes in kidney function render conclusions uncertain. Mendelian randomization studies generally do not support a causal role of serum urate in kidney disease, hypertension, or diabetes, although interpretation is complicated by nonhomogeneous populations, a failure to consider environmental interactions, and a lack of understanding of how the genetic polymorphisms affect biological mechanisms related to urate. Although several small clinical trials suggest benefits of urate-lowering therapies on kidney function, blood pressure, and insulin resistance, others have been negative, with many trials having design limitations and insufficient power. Thus, whether uric acid has a causal role in kidney and cardiovascular diseases requires further study.

      Index Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kim K.M.
        • Henderson G.N.
        • Ouyang X.
        • et al.
        A sensitive and specific liquid chromatography-tandem mass spectrometry method for the determination of intracellular and extracellular uric acid.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 877: 2032-2038
        • Kratzer J.T.
        • Lanaspa M.A.
        • Murphy M.N.
        • et al.
        Evolutionary history and metabolic insights of ancient mammalian uricases.
        Proc Natl Acad Sci U S A. 2014; 111: 3763-3768
        • Oda M.
        • Satta Y.
        • Takenaka O.
        • Takahata N.
        Loss of urate oxidase activity in hominoids and its evolutionary implications.
        Mol Biol Evol. 2002; 19: 640-653
        • Johnson R.J.
        • Titte S.
        • Cade J.R.
        • Rideout B.A.
        • Oliver W.J.
        Uric acid, evolution and primitive cultures.
        Semin Nephrol. 2005; 25: 3-8
        • Merriman T.R.
        Population heterogeneity in the genetic control of serum urate.
        Semin Nephrol. 2011; 31: 420-425
        • Gondouin B.
        • Jourde-Chiche N.
        • Sallee M.
        • et al.
        Plasma xanthine oxidase activity is predictive of cardiovascular disease in patients with chronic kidney disease, independently of uric acid levels.
        Nephron. 2015; 131: 167-174
        • Mandal A.K.
        • Mount D.B.
        The molecular physiology of uric acid homeostasis.
        Annu Rev Physiol. 2015; 77: 323-345
        • Coady M.J.
        • Chang M.H.
        • Charron F.M.
        • et al.
        The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter.
        J Physiol. 2004; 557: 719-731
        • Srinivas S.R.
        • Gopal E.
        • Zhuang L.
        • et al.
        Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2).
        Biochem J. 2005; 392: 655-664
        • Goldfinger S.
        • Klinenberg Jr., E.
        • Seegmiller J.E.
        Renal retention of uric acid induced by infusion of beta-hydroxybutyrate and acetoacetate.
        N Engl J Med. 1965; 272: 351-355
        • Gibson H.V.
        • Doisy E.A.
        A note on the effect of some organic acids upon the uric acid excretion of man.
        J Biol Chem. 1923; 55: 605-610
        • Gershon S.L.
        • Fox I.H.
        Pharmacologic effects of nicotinic acid on human purine metabolism.
        J Lab Clin Med. 1974; 84: 179-186
        • Shapiro M.
        • Hyde L.
        Hyperuricemia due to pyrazinamide.
        Am J Med. 1957; 23: 596-599
        • Guggino S.E.
        • Aronson P.S.
        Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes.
        J Clin Invest. 1985; 76: 543-547
        • Enomoto A.
        • Kimura H.
        • Chairoungdua A.
        • et al.
        Molecular identification of a renal urate anion exchanger that regulates blood urate levels.
        Nature. 2002; 417: 447-452
        • Bahn A.
        • Hagos Y.
        • Reuter S.
        • et al.
        Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13).
        J Biol Chem. 2008; 283: 16332-16341
        • Hagos Y.
        • Stein D.
        • Ugele B.
        • Burckhardt G.
        • Bahn A.
        Human renal organic anion transporter 4 operates as an asymmetric urate transporter.
        J Am Soc Nephrol. 2007; 18: 430-439
        • Manolescu A.R.
        • Augustin R.
        • Moley K.
        • Cheeseman C.
        A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity.
        Mol Membr Biol. 2007; 24: 455-463
        • Anzai N.
        • Ichida K.
        • Jutabha P.
        • et al.
        Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans.
        J Biol Chem. 2008; 283: 26834-26838
        • Eraly S.A.
        • Vallon V.
        • Rieg T.
        • et al.
        Multiple organic anion transporters contribute to net renal excretion of uric acid.
        Physiol Genom. 2008; 33: 180-192
        • Van Aubel R.A.
        • Smeets P.H.
        • Van Den Heuvel J.J.
        • Russel F.G.
        Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites.
        Am J Physiol Renal Physiol. 2005; 288: F327-F333
        • Matsuo H.
        • Takada T.
        • Ichida K.
        • et al.
        Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.
        Sci Transl Med. 2009; 1: 5ra11
        • Woodward O.M.
        • Kottgen A.
        • Coresh J.
        • Boerwinkle E.
        • Guggino W.B.
        • Kottgen M.
        Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.
        Proc Natl Acad Sci U S A. 2009; 106: 10338-10342
        • Iharada M.
        • Miyaji T.
        • Fujimoto T.
        • et al.
        Type 1 sodium-dependent phosphate transporter (SLC17A1 protein) is a Cl(-)-dependent urate exporter.
        J Biol Chem. 2010; 285: 26107-26113
        • Jutabha P.
        • Kanai Y.
        • Hosoyamada M.
        • et al.
        Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule.
        J Biol Chem. 2003; 278: 27930-27938
        • Jutabha P.
        • Anzai N.
        • Kitamura K.
        • et al.
        Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate.
        J Biol Chem. 2010; 285: 35123-35132
        • DeBosch B.J.
        • Kluth O.
        • Fujiwara H.
        • Schurmann A.
        • Moley K.
        Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9.
        Nat Commun. 2014; 5: 4642
        • Ichida K.
        • Matsuo H.
        • Takada T.
        • et al.
        Decreased extra-renal urate excretion is a common cause of hyperuricemia.
        Nat Commun. 2012; 3: 764
        • Feig D.I.
        • Johnson R.J.
        Hyperuricemia in childhood primary hypertension.
        Hypertension. 2003; 42: 247-252
        • Clifford A.J.
        • Riumallo J.A.
        • Youn V.R.
        • Scrimshaw N.S.
        Effect of oral purines on serum and urinary uric acid of normal, hyperuricemic and gouty humans.
        J Nutr. 1976; 106: 428-434
        • Ames B.N.
        • Cathcart R.
        • Schwiers E.
        • Hochstein P.
        Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.
        Proc Natl Acad Sci U S A. 1981; 78: 6858-6862
        • Justicia C.
        • Salas-Perdomo A.
        • Perez-de-Puig I.
        • et al.
        Uric acid is protective after cerebral ischemia/reperfusion in hyperglycemic mice.
        Transl Stroke Res. 2017; 8: 294-305
        • Hooper D.C.
        • Spitsin S.
        • Kean R.B.
        • et al.
        Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis.
        Proc Natl Acad Sci U S A. 1998; 95: 675-680
        • Imaram W.
        • Gersch C.
        • Kim K.M.
        • Johnson R.J.
        • Henderson G.N.
        • Angerhofer A.
        Radicals in the reaction between peroxynitrite and uric acid identified by electron spin resonance spectroscopy and liquid chromatography mass spectrometry.
        Free Radic Biol Med. 2010; 49: 275-281
        • Patricio E.S.
        • Prado F.M.
        • da Silva R.P.
        • et al.
        Chemical characterization of urate hydroperoxide, a pro-oxidant intermediate generated by urate oxidation in inflammatory and photoinduced processes.
        Chem Res Toxicol. 2015; 28: 1556-1566
        • Shi Y.
        • Evans J.E.
        • Rock K.L.
        Molecular identification of a danger signal that alerts the immune system to dying cells.
        Nature. 2003; 425: 516-521
        • Shi Y.
        • Galusha S.A.
        • Rock K.L.
        Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model.
        J Immunol. 2006; 176: 3905-3908
        • Sautin Y.Y.
        • Nakagawa T.
        • Zharikov S.
        • Johnson R.J.
        Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.
        Am J Physiol Cell Physiol. 2007; 293: C584-C596
        • Lanaspa M.A.
        • Sanchez-Lozada L.G.
        • Choi Y.J.
        • et al.
        Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.
        J Biol Chem. 2012; 287: 40732-40744
        • Corry D.B.
        • Eslami P.
        • Yamamoto K.
        • Nyby M.D.
        • Makino H.
        • Tuck M.L.
        Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system.
        J Hypertens. 2008; 26: 269-275
        • Yu M.A.
        • Sanchez-Lozada L.G.
        • Johnson R.J.
        • Kang D.H.
        Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction.
        J Hypertens. 2010; 28: 1234-1242
        • Cirillo P.
        • Gersch M.S.
        • Mu W.
        • et al.
        Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells.
        J Am Soc Nephrol. 2009; 20: 545-553
        • Kang D.H.
        • Nakagawa T.
        • Feng L.
        • et al.
        A role for uric acid in the progression of renal disease.
        J Am Soc Nephrol. 2002; 13: 2888-2897
        • Kang D.H.
        • Park S.K.
        • Lee I.K.
        • Johnson R.J.
        Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells.
        J Am Soc Nephrol. 2005; 16: 3553-3562
        • Xiao J.
        • Zhang X.L.
        • Fu C.
        • et al.
        Soluble uric acid increases NALP3 inflammasome and interleukin-1beta expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway.
        Int J Mol Med. 2015; 35: 1347-1354
        • Zharikov S.
        • Krotova K.
        • Hu H.
        • et al.
        Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells.
        Am J Physiol Cell Physiol. 2008; 295: C1183-C1190
        • Gersch C.
        • Palii S.P.
        • Kim K.M.
        • Angerhofer A.
        • Johnson R.J.
        • Henderson G.N.
        Inactivation of nitric oxide by uric acid.
        Nucleosides Nucleotides Nucleic Acids. 2008; 27: 967-978
        • Sanchez-Lozada L.G.
        • Lanaspa M.A.
        • Cristobal-Garcia M.
        • et al.
        Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations.
        Nephron Exp Nephrol. 2012; 121: e71-e78
        • Roncal C.A.
        • Mu W.
        • Croker B.
        • et al.
        Effect of elevated serum uric acid on cisplatin-induced acute renal failure.
        Am J Physiol Renal Physiol. 2007; 292: F116-F122
        • Roncal-Jimenez C.A.
        • Lanaspa M.A.
        • Rivard C.J.
        • et al.
        Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake.
        Metabolism. 2011; 60: 1259-1270
        • Rao G.N.
        • Corson M.A.
        • Berk B.C.
        Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression.
        J Biol Chem. 1991; 266: 8604-8608
        • Lanaspa M.A.
        • Cicerchi C.
        • Garcia G.
        • et al.
        Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver.
        PLoS One. 2012; 7: e48801
        • Lanaspa M.A.
        • Sanchez-Lozada L.G.
        • Cicerchi C.
        • et al.
        Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver.
        PLoS One. 2012; 7: e47948
        • Mazzali M.
        • Hughes J.
        • Kim Y.G.
        • et al.
        Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism.
        Hypertension. 2001; 38: 1101-1106
        • Mazzali M.
        • Kanellis J.
        • Han L.
        • et al.
        Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism.
        Am J Physiol Renal Physiol. 2002; 282: F991-F997
        • Sanchez-Lozada L.G.
        • Soto V.
        • Tapia E.
        • et al.
        Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia.
        Am J Physiol Renal Physiol. 2008; 295: F1134-F1141
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Lopez-Molina R.
        • et al.
        Effects of acute and chronic L-arginine treatment in experimental hyperuricemia.
        Am J Physiol Renal Physiol. 2007; 292: F1238-F1244
        • Watanabe S.
        • Kang D.H.
        • Feng L.
        • et al.
        Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity.
        Hypertension. 2002; 40: 355-360
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Santamaria J.
        • et al.
        Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats.
        Kidney Int. 2005; 67: 237-247
        • Nakagawa T.
        • Mazzali M.
        • Kang D.H.
        • et al.
        Hyperuricemia causes glomerular hypertrophy in the rat.
        Am J Nephrol. 2003; 23: 2-7
        • Johnson R.J.
        • Segal M.S.
        • Srinivas T.
        • et al.
        Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link?.
        J Am Soc Nephrol. 2005; 16: 1909-1919
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Soto V.
        • et al.
        Treatment with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia.
        Nephrol Dial Transplant. 2008; 23: 1179-1185
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Vila-Casado C.
        • et al.
        Mild hyperuricemia induces glomerular hypertension in normal rats.
        Am J Physiol Renal Physiol. 2002; 283: F1105-F1110
        • Sathisha K.R.
        • Gopal S.
        • Rangappa K.S.
        Antihyperuricemic effects of thiadiazolopyrimidin-5-one analogues in oxonate treated rats.
        Eur J Pharmacol. 2016; 776: 99-105
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Soto V.
        • et al.
        Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia.
        Nephron Physiol. 2008; 108: 69-78
        • Mazzali M.
        • Kim Y.G.
        • Suga S.
        • et al.
        Hyperuricemia exacerbates chronic cyclosporine nephropathy.
        Transplantation. 2001; 71: 900-905
        • Kim H.S.
        • Lim S.W.
        • Jin L.
        • Jin J.
        • Chung B.H.
        • Yang C.W.
        The protective effect of febuxostat on chronic tacrolimus-induced nephrotoxicity in rats.
        Nephron. 2017; 135: 61-71
        • Mazali F.C.
        • Johnson R.J.
        • Mazzali M.
        Use of uric acid-lowering agents limits experimental cyclosporine nephropathy.
        Nephron Exp Nephrol. 2012; 120: e12-e19
        • Lee H.J.
        • Jeong K.H.
        • Kim Y.G.
        • et al.
        Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model.
        Am J Nephrol. 2014; 40: 56-63
        • Komers R.
        • Xu B.
        • Schneider J.
        • Oyama T.T.
        Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes.
        Br J Pharmacol. 2016; 173: 2573-2588
        • Kim S.-M.
        • Lee S.-H.
        • Kim Y.-G.
        • et al.
        Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy.
        Am J Physiol Renal Physiol. 2015; 308: F993-F1003
        • Kosugi T.
        • Nakayama T.
        • Heinig M.
        • et al.
        Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice.
        Am J Physiol Renal Physiol. 2009; 297 (F481-8)
        • Laakso J.T.
        • Teravainen T.L.
        • Martelin E.
        • Vaskonen T.
        • Lapatto R.
        Renal xanthine oxidoreductase activity during development of hypertension in spontaneously hypertensive rats.
        J Hypertens. 2004; 22: 1333-1340
        • Gois P.
        • Canale D.
        • Volpini R.A.
        • et al.
        Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: renal and muscular protection.
        Free Radic Biol Med. 2016; 101: 176-189
        • Omori H.
        • Kawada N.
        • Inoue K.
        • et al.
        Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy.
        Clin Exp Nephrol. 2012; 16: 549-556
        • Tsuda H.
        • Kawada N.
        • Kaimori J-y
        • et al.
        Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress.
        Biochem Biophys Res Commun. 2012; 427: 266-272
        • Martillo M.A.
        • Nazzal L.
        • Crittenden D.B.
        The crystallization of monosodium urate.
        Curr Rheumatol Rep. 2014; 16 (1-13): 400
        • Rock K.L.
        • Kataoka H.
        • Lai J.-J.
        Uric acid as a danger signal in gout and its comorbidities.
        Nat Rev Rheumatol. 2012; 9: 13-23
        • Kanbay M.
        • Solak Y.
        • Afsar B.
        • et al.
        Serum uric acid and risk for acute kidney injury following contrast.
        Angiology. 2017; 68: 132-144
        • Roncal-Jimenez C.
        • Garcia-Trabanino R.
        • Barregard L.
        • et al.
        Heat stress nephropathy from exercise-induced uric acid crystalluria: a perspective on Mesoamerican nephropathy.
        Am J Kidney Dis. 2016; 67: 20-30
        • Johnson R.J.
        • Segal M.S.
        • Sautin Y.
        • et al.
        Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease.
        Am J Clin Nutr. 2007; 86: 899-906
        • Choi Y.J.
        • Shin H.S.
        • Choi H.S.
        • et al.
        Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes.
        Lab Invest. 2014; 94: 1114-1125
        • Cicerchi C.
        • Li N.
        • Kratzer J.
        • et al.
        Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids.
        FASEB J. 2014; 28: 3339-3350
        • Huang Z.
        • Hong Q.
        • Zhang X.
        • et al.
        Aldose reductase mediates endothelial cell dysfunction induced by high uric acid concentrations.
        Cell Commun Signal. 2017; 15: 1-13
        • Baldwin W.
        • McRae S.
        • Marek G.
        • et al.
        Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome.
        Diabetes. 2011; 60: 1258-1269
        • Nakagawa T.
        • Hu H.
        • Zharikov S.
        • et al.
        A causal role for uric acid in fructose-induced metabolic syndrome.
        Am J Physiol Renal Physiol. 2006; 290: F625-F631
        • Reungjui S.
        • Pratipanawatr T.
        • Johnson R.J.
        • Nakagawa T.
        Do thiazides worsen metabolic syndrome and renal disease? The pivotal roles for hyperuricemia and hypokalemia.
        Curr Opin Nephrol Hypertens. 2008; 17: 470-476
        • Preitner F.
        • Pimentel A.
        • Metref S.
        • et al.
        No development of hypertension in the hyperuricemic liver-Glut9 knockout mouse.
        Kidney Int. 2015; 87: 940-947
        • Johnson R.J.
        • Andrews P.
        The fat gene: a genetic mutation in prehistoric apes may underlie today’s pandemic of obesity and diabetes.
        Sci Am. 2015; 313: 64-69
        • Borghi C.
        • Cicero A.F.G.
        Serum uric acid and cardiometabolic disease: another brick in the wall?.
        Hypertension. 2017; 69: 1011-1013
        • Borghi C.
        • Rosei E.A.
        • Bardin T.
        • et al.
        Serum uric acid and the risk of cardiovascular and renal disease.
        J Hypertens. 2015; 33 (discussion 1741): 1729-1741
        • Feig D.I.
        • Madero M.
        • Jalal D.I.
        • Sanchez-Lozada L.G.
        • Johnson R.J.
        Uric acid and the origins of hypertension.
        J Pediatr. 2013; 162: 896-902
        • Grayson P.C.
        • Kim S.Y.
        • LaValley M.
        • Choi H.K.
        Hyperuricemia and incident hypertension: a systematic review and meta-analysis.
        Arthritis Care Res (Hoboken). 2011; 63: 102-110
        • Zhang W.
        • Sun K.
        • Yang Y.
        • Zhang H.
        • Hu F.B.
        • Hui R.
        Plasma uric acid and hypertension in a Chinese community: prospective study and metaanalysis.
        Clin Chem. 2009; 55: 2026-2034
        • Johnson R.J.
        • Feig D.I.
        • Herrera-Acosta J.
        • Kang D.H.
        Resurrection of uric acid as a causal risk factor in essential hypertension.
        Hypertension. 2005; 45: 18-20
        • Feig D.I.
        • Soletsky B.
        • Johnson R.J.
        Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial.
        JAMA. 2008; 300: 924-932
        • Rodriguez-Iturbe B.
        • Vaziri N.D.
        • Herrera-Acosta J.
        • Johnson R.J.
        Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all.
        Am J Physiol Renal Physiol. 2004; 286: F606-F616
        • Johnson R.J.
        • Nakagawa T.
        • Sanchez-Lozada L.G.
        • et al.
        Sugar, uric acid, and the etiology of diabetes and obesity.
        Diabetes. 2013; 62: 3307-3315
        • Kodama S.
        • Saito K.
        • Yachi Y.
        • et al.
        Association between serum uric acid and development of type 2 diabetes.
        Diabetes Care. 2009; 32: 1737-1742
        • Lv Q.
        • Meng X.F.
        • He F.F.
        • et al.
        High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies.
        PLoS One. 2013; 8: e56864
        • Masuo K.
        • Kawaguchi H.
        • Mikami H.
        • Ogihara T.
        • Tuck M.L.
        Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation.
        Hypertension. 2003; 42: 474-480
        • Johnson R.J.
        • Nakagawa T.
        • Jalal D.
        • Sanchez-Lozada L.G.
        • Kang D.H.
        • Ritz E.
        Uric acid and chronic kidney disease: which is chasing which?.
        Nephrol Dial Transplant. 2013; 28: 2221-2228
        • Li L.
        • Yang C.
        • Zhao Y.
        • Zeng X.
        • Liu F.
        • Fu P.
        Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and meta-analysis based on observational cohort studies.
        BMC Nephrol. 2014; 15: 122
        • Zhu P.
        • Liu Y.
        • Han L.
        • Xu G.
        • Ran J.M.
        Serum uric acid is associated with incident chronic kidney disease in middle-aged populations: a meta-analysis of 15 cohort studies.
        PLoS One. 2014; 9: e100801
        • Jalal D.I.
        • Rivard C.J.
        • Johnson R.J.
        • et al.
        Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study.
        Nephrol Dial Transplant. 2010; 25: 1865-1869
        • Hovind P.
        • Rossing P.
        • Tarnow L.
        • Johnson R.J.
        • Parving H.H.
        Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study.
        Diabetes. 2009; 58: 1668-1671
        • De Cosmo S.
        • Viazzi F.
        • Pacilli A.
        • et al.
        Serum uric acid and risk of CKD in type 2 diabetes.
        Clin J Am Soc Nephrol. 2015; 10: 1921-1929
        • Jalal D.I.
        • Chonchol M.
        • Chen W.
        • Targher G.
        Uric acid as a target of therapy in CKD.
        Am J Kidney Dis. 2013; 61: 134-146
        • Lapsia V.
        • Johnson R.J.
        • Dass B.
        • et al.
        Elevated uric acid increases the risk for acute kidney injury.
        Am J Med. 2012; 125: 302.e309-302.e317
        • Johnson R.J.
        • Kang D.H.
        • Feig D.
        • et al.
        Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?.
        Hypertension. 2003; 41: 1183-1190
        • Kim S.Y.
        • Guevara J.P.
        • Kim K.M.
        • Choi H.K.
        • Heitjan D.F.
        • Albert D.A.
        Hyperuricemia and coronary heart disease: a systematic review and meta-analysis.
        Arthritis Care Res (Hoboken). 2010; 62: 170-180
        • Wheeler J.G.
        • Juzwishin K.D.
        • Eiriksdottir G.
        • Gudnason V.
        • Danesh J.
        Serum uric acid and coronary heart disease in 9,458 incident cases and 155,084 controls: prospective study and meta-analysis.
        PLoS Med. 2005; 2: e76
        • Tangri N.
        • Weiner D.E.
        Uric acid, CKD, and cardiovascular disease: confounders, culprits, and circles.
        Am J Kidney Dis. 2010; 56: 247-250
        • Kuwabara M.
        • Niwa K.
        • Hisatome I.
        • et al.
        Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year Japanese cohort study.
        Hypertension. 2017; 69: 1036-1044
        • Odden M.C.
        • Amadu A.R.
        • Smit E.
        • Lo L.
        • Peralta C.A.
        Uric acid levels, kidney function, and cardiovascular mortality in US adults: National Health and Nutrition Examination Survey (NHANES) 1988-1994 and 1999-2002.
        Am J Kidney Dis. 2014; 64: 550-557
        • Garcia Puig J.
        • Mateos Anton F.
        • Munoz Sanz A.
        • et al.
        Renal handling of uric acid in normal subjects by means of the pyrazinamide and probenecid tests.
        Nephron. 1983; 35: 183-186
        • Kottgen A.
        • Albrecht E.
        • Teumer A.
        • et al.
        Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.
        Nat Genet. 2013; 45: 145-154
        • Okada Y.
        • Sim X.
        • Go M.J.
        • et al.
        Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations.
        Nat Genet. 2012; 44: 904-909
        • Anzai N.
        • Miyazaki H.
        • Noshiro R.
        • et al.
        The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C-terminal.
        J Biol Chem. 2004; 279: 45942-45950
        • Tin A.
        • Woodward O.M.
        • Kao W.H.
        • et al.
        Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele.
        Hum Mol Genet. 2011; 20: 4056-4068
        • Ichida K.
        • Hosoyamada M.
        • Hisatome I.
        • et al.
        Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion.
        J Am Soc Nephrol. 2004; 15: 164-173
        • Matsuo H.
        • Chiba T.
        • Nagamori S.
        • et al.
        Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.
        Am J Hum Genet. 2008; 83: 744-751
        • Dinour D.
        • Gray N.K.
        • Campbell S.
        • et al.
        Homozygous SLC2A9 mutations cause severe renal hypouricemia.
        J Am Soc Nephrol. 2010; 21: 64-72
        • Phipps-Green A.J.
        • Merriman M.E.
        • Topless R.
        • et al.
        Twenty-eight loci that influence serum urate levels: analysis of association with gout.
        Ann Rheum Dis. 2016; 75: 124-130
        • Urano W.
        • Taniguchi A.
        • Inoue E.
        • et al.
        Effect of genetic polymorphisms on development of gout.
        J Rheumatol. 2013; 40: 1374-1378
        • Robinson P.C.
        • Choi H.K.
        • Do R.
        • Merriman T.R.
        Insight into rheumatological cause and effect through the use of Mendelian randomization.
        Nat Rev Rheumatol. 2016; 12: 486-496
        • Yang Q.
        • Kottgen A.
        • Dehghan A.
        • et al.
        Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors.
        Circ Cardiovasc Genet. 2010; 3: 523-530
        • Sluijs I.
        • Holmes M.V.
        • van der Schouw Y.T.
        • et al.
        A Mendelian randomization study of circulating uric acid and type 2 diabetes.
        Diabetes. 2015; 64: 3028-3036
        • Pfister R.
        • Barnes D.
        • Luben R.
        • et al.
        No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach.
        Diabetologia. 2011; 54: 2561-2569
        • Hughes K.
        • Flynn T.
        • de Zoysa J.
        • Dalbeth N.
        • Merriman T.R.
        Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function.
        Kidney Int. 2014; 85: 344-351
        • Keenan T.
        • Zhao W.
        • Rasheed A.
        • et al.
        Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study.
        J Am Coll Cardiol. 2016; 67: 407-416
        • Preitner F.
        • Bonny O.
        • Laverriere A.
        • et al.
        Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy.
        Proc Natl Acad Sci U S A. 2009; 106: 15501-15506
        • Topless R.K.
        • Flynn T.J.
        • Cadzow M.
        • et al.
        Association of SLC2A9 genotype with phenotypic variability of serum urate in pre-menopausal women.
        Front Genet. 2015; 6 (1-9): 313
        • Batt C.
        • Phipps-Green A.J.
        • Black M.A.
        • et al.
        Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout.
        Ann Rheum Dis. 2014; 73: 2101-2106
        • Scheepers L.E.
        • Wei F.F.
        • Stolarz-Skrzypek K.
        • et al.
        Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: a population study.
        J Hypertens. 2016; 34: 2147-2154
        • Yang J.
        • Kamide K.
        • Kokubo Y.
        • et al.
        Associations of hypertension and its complications with variations in the xanthine dehydrogenase gene.
        Hypertens Res. 2008; 31: 931-940
        • Kleber M.E.
        • Delgado G.
        • Grammer T.B.
        • et al.
        Uric acid and cardiovascular events: a Mendelian randomization study.
        J Am Soc Nephrol. 2015; 26: 2831-2838
        • Testa A.
        • Mallamaci F.
        • Leonardis D.
        • et al.
        Synergism between asymmetric dimethylarginine (ADMA) and a genetic marker of uric acid in CKD progression.
        Nutr Metab Cardiovasc Dis. 2015; 25: 167-172
        • Voruganti V.S.
        • Laston S.
        • Haack K.
        • et al.
        Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia Study.
        Am J Clin Nutr. 2015; 101: 725-732
        • Voruganti V.S.
        • Nath S.D.
        • Cole S.A.
        • et al.
        Genetics of variation in serum uric acid and cardiovascular risk factors in Mexican Americans.
        J Clin Endocrinol Metab. 2009; 94: 632-638
        • Sun X.
        • Zhang R.
        • Jiang F.
        • et al.
        Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population.
        PLoS One. 2015; 10: e0116714
        • Shafiu M.
        • Johnson R.J.
        • Turner S.T.
        • et al.
        Urate transporter gene SLC22A12 polymorphisms associated with obesity and metabolic syndrome in Caucasians with hypertension.
        Kidney Blood Press Res. 2012; 35: 477-482
        • Parsa A.
        • Brown E.
        • Weir M.R.
        • et al.
        Genotype-based changes in serum uric acid affect blood pressure.
        Kidney Int. 2012; 81: 502-507
        • Mallamaci F.
        • Testa A.
        • Leonardis D.
        • et al.
        A genetic marker of uric acid level, carotid atherosclerosis, and arterial stiffness: a family-based study.
        Am J Kidney Dis. 2015; 65: 294-302
        • Mallamaci F.
        • Testa A.
        • Leonardis D.
        • et al.
        A polymorphism in the major gene regulating serum uric acid associates with clinic SBP and the white-coat effect in a family-based study.
        J Hypertens. 2014; 32: 1621-1628
        • Voruganti V.S.
        • Franceschini N.
        • Haack K.
        • et al.
        Replication of the effect of SLC2A9 genetic variation on serum uric acid levels in American Indians.
        Eur J Hum Genet. 2014; 22: 938-943
        • Palmer T.M.
        • Nordestgaard B.G.
        • Benn M.
        • et al.
        Association of plasma uric acid with ischaemic heart disease and blood pressure: Mendelian randomisation analysis of two large cohorts.
        BMJ. 2013; 347: f4262
        • Pattaro C.
        • Teumer A.
        • Gorski M.
        • et al.
        Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.
        Nat Commun. 2016; 7: 10023
        • Soletsky B.
        • Feig D.I.
        Uric acid reduction rectifies prehypertension in obese adolescents.
        Hypertension. 2012; 60: 1148-1156
        • Higgins P.
        • Walters M.R.
        • Murray H.M.
        • et al.
        Allopurinol reduces brachial and central blood pressure, and carotid intima-media thickness progression after ischaemic stroke and transient ischaemic attack: a randomised controlled trial.
        Heart. 2014; 100: 1085-1092
        • Madero M.
        • Rodriguez Castellanos F.E.
        • Jalal D.
        • et al.
        A pilot study on the impact of a low fructose diet and allopurinol on clinic blood pressure among overweight and prehypertensive subjects: a randomized placebo controlled trial.
        J Am Soc Hypertens. 2015; 9: 837-844
        • Kanbay M.
        • Huddam B.
        • Azak A.
        • et al.
        A randomized study of allopurinol on endothelial function and estimated glomerular filtration rate in asymptomatic hyperuricemic subjects with normal renal function.
        Clin J Am Soc Nephrol. 2011; 6: 1887-1894
        • Borgi L.
        • McMullan C.
        • Wohlhueter A.
        • Curhan G.C.
        • Fisher N.D.
        • Forman J.P.
        Effect of uric acid-lowering agents on endothelial function: a randomized, double-blind, placebo-controlled trial.
        Hypertension. 2017; 69: 243-248
        • McMullan C.J.
        • Borgi L.
        • Fisher N.
        • Curhan G.
        • Forman J.
        Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial.
        Clin J Am Soc Nephrol. 2017; 12: 807-816
        • Segal M.S.
        • Srinivas T.R.
        • Mohandas R.
        • et al.
        The effect of the addition of allopurinol on blood pressure control in African Americans treated with a thiazide-like diuretic.
        J Am Soc Hypertens. 2015; 9: 610-619.e611
        • Siu Y.P.
        • Leung K.T.
        • Tong M.K.
        • Kwan T.H.
        Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level.
        Am J Kidney Dis. 2006; 47: 51-59
        • Goicoechea M.
        • de Vinuesa S.G.
        • Verdalles U.
        • et al.
        Effect of allopurinol in chronic kidney disease progression and cardiovascular risk.
        Clin J Am Soc Nephrol. 2010; 5: 1388-1393
        • Sircar D.
        • Chatterjee S.
        • Waikhom R.
        • et al.
        Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial.
        Am J Kidney Dis. 2015; 66: 945-950
        • Whelton A.
        • Macdonald P.A.
        • Zhao L.
        • Hunt B.
        • Gunawardhana L.
        Renal function in gout: long-term treatment effects of febuxostat.
        J Clin Rheumatol. 2011; 17: 7-13
        • Kim H.A.
        • Seo Y.I.
        • Song Y.W.
        Four-week effects of allopurinol and febuxostat treatments on blood pressure and serum creatinine level in gouty men.
        J Korean Med Sci. 2014; 29: 1077-1081
        • Liu P.
        • Chen Y.
        • Wang B.
        • Zhang F.
        • Wang D.
        • Wang Y.
        Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study.
        Clin Endocrinol (Oxf). 2015; 83: 475-482
        • Goicoechea M.
        • Garcia de Vinuesa S.
        • Verdalles U.
        • et al.
        Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial.
        Am J Kidney Dis. 2015; 65: 543-549
        • Sezai A.
        • Soma M.
        • Nakata K.
        • et al.
        Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients (NU-FLASH Trial).
        Circ J. 2013; 77: 2043-2049
        • Momeni A.
        • Shahidi S.
        • Seirafian S.
        • Taheri S.
        • Kheiri S.
        Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients.
        Iran J Kidney Dis. 2010; 4: 128-132
        • Shi Y.
        • Chen W.
        • Jalal D.
        • et al.
        Clinical outcome of hyperuricemia in IgA nephropathy: a retrospective cohort study and randomized controlled trial.
        Kidney Blood Press Res. 2012; 35: 153-160
        • Tanaka K.
        • Nakayama M.
        • Kanno M.
        • et al.
        Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease: a parallel-group, randomized, controlled trial.
        Clin Exp Nephrol. 2015; 19: 1044-1053
        • Ejaz A.A.
        • Dass B.
        • Lingegowda V.
        • et al.
        Effect of uric acid lowering therapy on the prevention of acute kidney injury in cardiovascular surgery.
        Int Urol Nephrol. 2013; 45: 449-458
        • Kumar S.
        • Bhawani G.
        • Kumari N.
        • Murthy K.S.N.
        • Lalwani V.
        • Raju C.H.N.
        Comparative study of renal protective effects of allopurinol and N-acetyl-cysteine on contrast induced nephropathy in patients undergoing cardiac catheterization.
        J Clin Diagn Res. 2014; 8: HC03-HC07
        • Erol T.
        • Tekin A.
        • Katircibasi M.T.
        • et al.
        Efficacy of allopurinol pretreatment for prevention of contrast-induced nephropathy: a randomized controlled trial.
        Int J Cardiol. 2013; 167: 1396-1399
        • Ogino K.
        • Kato M.
        • Furuse Y.
        • et al.
        Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study.
        Circ Heart Fail. 2010; 3: 73-81
        • Meng J.
        • Li Y.
        • Yuan X.
        • Lu Y.
        Effects of febuxostat on insulin resistance and expression of high-sensitivity C-reactive protein in patients with primary gout.
        Rheumatol Int. 2017; 37: 299-303
        • Takir M.
        • Kostek O.
        • Ozkok A.
        • et al.
        Lowering uric acid with allopurinol improves insulin resistance and systemic inflammation in asymptomatic hyperuricemia.
        J Investig Med. 2015; 63: 924-929
        • Perez-Pozo S.E.
        • Schold J.
        • Nakagawa T.
        • Sanchez-Lozada L.G.
        • Johnson R.J.
        • Lillo J.L.
        Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response.
        Int J Obes (Lond). 2010; 34: 454-461
        • George J.
        • Carr E.
        • Davies J.
        • Belch J.J.
        • Struthers A.
        High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid.
        Circulation. 2006; 114: 2508-2516
        • McNally J.S.
        • Davis M.E.
        • Giddens D.P.
        • et al.
        Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress.
        Am J Physiol Heart Circ Physiol. 2003; 285: H2290-H2297
        • Talaat K.M.
        • El-Sheikh A.R.
        The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease.
        Am J Nephrol. 2007; 27: 435-440
        • Jung J.W.
        • Song W.J.
        • Kim Y.S.
        • et al.
        HLA-B58 can help the clinical decision on starting allopurinol in patients with chronic renal insufficiency.
        Nephrol Dial Transplant. 2011; 26: 3567-3572
        • MacDonald T.M.
        • Ford I.
        • Nuki G.
        • et al.
        Protocol of the Febuxostat versus Allopurinol Streamlined Trial (FAST): a large prospective, randomised, open, blinded endpoint study comparing the cardiovascular safety of allopurinol and febuxostat in the management of symptomatic hyperuricaemia.
        BMJ Open. 2014; 4: e005354
      1. FDA. Uloric (febuxostat): Drug Safety Communication - FDA to evaluate increased risk of heart-related death. 2017. https://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm585281.htm. Accessed November 23, 2017.

        • Sanchez-Nino M.D.
        • Zheng-Lin B.
        • Valino-Rivas L.
        • et al.
        Lesinurad: what the nephrologist should know.
        Clin Kidney J. 2017; 10: 679-687
        • Maahs D.M.
        • Caramori L.
        • Cherney D.Z.
        • et al.
        Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study.
        Curr Diab Rep. 2013; 13: 550-559
        • Sampson A.L.
        • Singer R.F.
        • Walters G.D.
        Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease.
        Cochrane Database Syst Rev. 2017; 10: CD009460