Patient-Reported Outcome Measures for Adults With Kidney Disease: Current Measures, Ongoing Initiatives, and Future Opportunities for Incorporation Into Patient-Centered Kidney Care

Devika Nair and F. Perry Wilson

Tools that measure patients’ experiences and perceptions of disease are increasingly being recognized as important components of a multidisciplinary personalized approach to care. These patient-reported outcome measures (PROMs) have the ability to provide clinicians, researchers, and policymakers with valuable insights into patients’ symptoms and experiences that are unable to be ascertained by laboratory markers alone. If developed rigorously, studied systematically, and used judiciously, PROMs can effectively incorporate the patient voice into clinical care, clinical trials, and health care policy. PROMs have continued to gain attention and interest within the nephrology community, but key challenges and opportunities for their seamless uptake and integration remain. In this narrative overview, we provide nephrologists with a comprehensive list of existing PROMs developed for adults with kidney disease with information on their gaps and limitations; a rationale to support the continued incorporation of PROMs into nephrology clinical trials, clinical care, and health care policy; and a summary of ongoing initiatives and future opportunities to do so.

Note from Editors: This article was commissioned to celebrate the selection of Patient-Reported Outcomes as the champion of NephMadness 2018. NephMadness is an educational project styled as a tournament in which key concepts in nephrology “compete” to determine which deserves to be crowned the most notable recent advance in the field.

Introduction

Patient advocacy and an increasing appreciation of the central role that symptoms, emotions, and goals play in disease perceptions have led to greater emphasis on the use of patient-reported outcome measures (PROMs) in clinical care. According to the National Quality Forum, a PROM is a measure of a patient’s health conveyed directly by the patient, without interpretation by a clinician.1 PROMs, which can describe specific symptoms, treatment preferences, or aspects of overall health, provide insights into a patient’s well-being that are unable to be captured by laboratory data alone. The benefits of incorporating PROMs into clinical care are vast because studies have demonstrated their ability to cultivate shared decision making, allow for more nuanced predictions of disease trajectory, improve communication between physicians and patients, facilitate patient self-monitoring, reduce emergency department use, and enhance workflow efficiency.2-5

PROMs are particularly relevant to the care and health of patients with kidney disease. Studies have shown that patients with end-stage kidney disease (ESKD) have poorer functional status than those with other chronic conditions and that providers are largely unaware of the presence and severity of these symptoms.6-11 In the Standardized Outcomes in Nephrology (SONG) initiative, a multidisciplinary effort between clinicians, researchers, and patients to establish a shared set of outcome measures across the spectrum of kidney disease, patients with ESKD have ranked PROMs, reporting, for example, that self-reported quality of life holds greater weight than long-term survival.12

Though PROMs are increasingly being recognized as a key component of patient-centered kidney disease care, challenges to their seamless incorporation and uptake remain. In this narrative overview, we present an introduction to PROM development for nephrologists who may be less familiar with this subject, a list of PROMs developed for adults with kidney disease with limitations of each measure, ongoing initiatives and prior work related to the incorporation of PROMs into nephrology clinical trials health care policy, and a summary of future areas on which to focus.

Methods for Rigorous Development of PROMs

For a PROM to be considered methodologically rigorous, it must meet certain requirements. The Standards for Educational and Psychological Testing, a set of guidelines developed jointly by the American Educational Research Association, the American Psychological Association, and the National Council on Measurement in Education, include psychometric criteria for measure construction in psychology and education.13 The Consensus-Based Standards for the Health Measurement Instruments (COSMIN) checklist and the Consensus-Based Standards for the Health Measurement Instruments Outcome Measures in Effectiveness Trials (COMET) also provide guidelines for PROM development.14,15 Broadly speaking, these guidelines state that an ideal PROM must be valid, reliable, and responsive.
Validity begins with defining both the outcome of interest and the target population for whom the PROM is most relevant. This is followed by the development of a conceptual framework based on a literature review of similar PROMs in other chronic illnesses and qualitative analyses of interviews with key stakeholders (target patients and their providers). 16 Reliability requires that the vicissitudes of time and mode of administration do not significantly affect PROM interpretation, and responsiveness entails that a PROM accurately detects changes in an outcome over time.

This rigorous selection and validation of PROM items is followed by cognitive debriefing interviews to assess participant comprehension of each question item, evaluate information recall strategies, and analyze participant decision-making processes. 17 Finally, when the PROM is field tested in ethnically and socioeconomically diverse populations, ambiguous measure items are removed to facilitate uniform interpretation across a variety of target patient stakeholders.

PROMs for Adults With Kidney Disease: An Overview and Remaining Gaps

To identify a comprehensive list of PROMs developed for use among adults with non–dialysis-dependent, dialysis-dependent, or posttransplantation kidney disease, we conducted an online search between January 2019 and April 2019 using MEDLINE, PubMed, and Ovid. Key words included “patient-reported outcomes,” “patient-reported outcome measures,” “chronic dialysis,” “end-stage kidney disease,” “health-related quality of life.” Studies of patients who were 18 years or younger were excluded, and results consisted of PROMs developed between 1985 and 2019. Table 1 is a comprehensive list of these PROMs, along with their validity, reliability, responsiveness, and key limitations. 18–53

Most PROMs developed among adults with kidney disease focus on physical and emotional symptom burden, social relationships, and overall health-related quality of life (HRQoL). Many show acceptable validity, reliability, and, in some cases, responsiveness, but notable gaps remain. The vast majority focus on the in-center hemodialysis experience, limiting their validity among patients who opt for peritoneal dialysis or home hemodialysis. Only 4 measures address sexual dysfunction, 3 assess for changes in physical appearance, 1 includes worries related to travel and finances, and only 1 elicits spiritual concerns. Additionally, chronic kidney disease (CKD) is a heterogeneous illness, and with the exception of a PROM specific to autosomal dominant polycystic kidney disease (ADPKD), disease-specific PROMs are largely lacking.

Concerns also exist regarding the feasibility of administering existing PROMs and interpreting their results. Several PROMs in Table 1 require patients to recall symptoms during the past month, which may subject their responses to recall bias, and many require a minimum of 20 to 30 minutes to administer and complete. Certain PROMs have ceiling effects, which occur when a large proportion of respondents score the maximum value on an item measure. These effects may unintentionally reduce a PROM’s ability to adequately measure variation across a target population. Ordering effects, in which prior survey questions influence a participant’s subsequent responses, are also a concern. 54,55 Finally, few existing PROMs used cognitive debriefing techniques in their development or involved underrepresented groups, the latter of which is a concern given that ethnicity and socioeconomic status affect self-reported ratings of health in ESKD. 56 For future PROMs for adults with kidney disease to be developed rigorously, maintain feasibility, and retain the ability to be individualized, care must be taken to thoughtfully address these gaps and limitations.

PROMs in Nephrology Clinical Research: Adding Insight to Trial Results

PROMs are being recognized as key end points to be included in clinical trials. The US Food and Drug Administration (FDA) and the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) PRO extension have emphasized the need to include PROMs as trial end points, and the 2013 Consolidated Standards of Reporting Trials–Patient-Reported Outcome (CONSORT-PRO) extension includes guidance for PROM inclusion into clinical trials. 57–59 Additionally, a recent Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference recommended that PROMs be incorporated into clinical trials and kidney disease care registries. 60

Other subspecialties such as cardiology and oncology have recognized and successfully incorporated PROMs into randomized controlled trials (RCTs), and there exists immense opportunity for this to occur in nephrology. 61,62 Depressive symptoms and HRQoL in hemodialysis are both PROMs that have been shown in observational studies to be associated with clinically meaningful outcomes such as hospitalizations and mortality, but we need PROMs to more frequently be included as primary end points in RCTs. 53–71 Currently, there are 72 actively recruiting, ongoing, and recently completed RCTs involving PROMs in nephrology. Of these, only 19 include PROMs as primary end points, and only 10 originate in the United States. 72 This may be inappropriate considering the primacy of such outcomes in the minds of the patients with kidney disease who are trial participants.

Not all trials would benefit from having PROMs as primary end points, but incorporating PROMs would add great value to trials of treatments that may have direct effects on a patient’s symptoms, emotions, or pill burden. In a systematic review of 168 RCTs aimed to measure outcomes related to vascular access in hemodialysis, only 19 trials assessed pain during cannulation, 5 reported HRQoL, and only 1 addressed needle phobia. 73 This is
A number of existing high-profile studies have benefited from the inclusion of PROMs. The CKD Anti-depressant Sertraline Trial (CAST) evaluated the utility of sertraline for major depressive disorder among patients with non–dialysis-dependent CKD. Although the trial’s primary outcome was a patient’s score on the Quick Inventory of Depression Symptomatology, a PROM not specifically developed in patients with kidney disease, researchers also captured scores on a version of the Kidney Disease Quality of Life–Short Form instrument. That neither measure was significantly improved with sertraline administration suggested to the authors that according to this study, the drug had minimal effects on the experience of depression in a patient with CKD. Furthermore, the trial’s use of measures with continuous outcomes allowed for an efficient design that necessitated the enrollment of only 201 patients, rather than the thousands that would be necessary to evaluate dichotomous outcomes such as a suicide attempt.

PROMs can also give insight into treatment effects lost in the primary analysis of a trial. The Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT) randomly assigned 4,038 patients with diabetes, moderate anemia, and non–dialysis-dependent CKD to darbepoetin alfa versus placebo. No difference was observed in the rate of the primary composite outcome of cardiovascular morbidity or mortality, but secondary analyses demonstrated significant improvements on patient-reported fatigue scores as measured by the Functional Assessment of Cancer Therapy–Fatigue (FACT-Fatigue) instrument. Including PROMs in such analyses offers a more comprehensive view of a medication’s effects, allowing clinicians and patients to have a truly informed discussion about potential risks and benefits of therapies.

PROMs in Nephrology Health Care Policy: Shifting the Quality Paradigm

Fortunately, there has been a call in the nephrology community to shift the quality paradigm of kidney patient care to focus more on PROs, and several notable initiatives exist that aim to achieve this. In 2005, Kidney Care Partners, a group of dialysis health care professionals, patient advocates, and care providers, convened the Kidney Care Quality Alliance (KCQA) to develop performance measures for the care of patients with ESKD. In 2016, the KCQA launched its Patient-Reported Outcomes Initiative to establish a framework and provide recommendations for future PROM research and development. KCQA stakeholders viewed PROMs as ways to provide unique information unable to be obtained using traditional clinical reporting measures. The group recommended that medication management, fluid control, and specific aspects of HRQoL such as postdialysis recovery time and intradialytic symptoms be the focus of future PROMs in ESKD. The KCQA also recommended that PROMs be stratified by incident versus prevalent hemodialysis patients and that maintaining patient privacy during PROM collection be a priority.

The US Centers for Medicare & Medicaid Services (CMS) has also created initiatives to incorporate PROMs into dialysis quality metrics. HRQoL is required to be routinely assessed among patients of in-center hemodialysis facilities as part of the Conditions of Coverage. In addition, the 2015 ESKD Prospective Payment System final rule identified several examples of PROMs to help assess patients for major depressive disorder, and screenings for pain and depression were incorporated into the 2018 End-Stage Renal Disease Quality Incentive Program.

In 2013, CMS convened a Technical Expert Panel (TEP), which recommended that ESKD quality metrics include dialysis-specific HRQoL and functional status to better ascertain the tolerability of treatments. A more recent TEP consisting of patients, physicians, psychometricians, and industry representatives met to review existing HRQoL, dialysis recovery time, and Patient-Reported Outcomes Measurement Information System (PROMIS) measures; address the need for additional psychometric testing within the ESKD population; and develop recommendations on PRO-based performance measures. Because PROMIS instruments are administered using computer-adaptive testing, freely available to the public, and use item response theory to generate individualized brief measures that span multiple domains related to HRQoL, they were viewed as feasible and sustainable PROMs by several TEP members. The TEP also identified 2 new topic areas of interest of highest priority in PROM development: assessment of patient life goals and assessment of patient safety. Panel members agreed that assessing perceptions of safety and life goals were critical gaps in current assessments of a dialysis patient’s illness experience and that incorporating these measures would not significantly add to survey fatigue. PROMs that incorporate life goals were also viewed as a potential way to encourage conversations related to shared decision making in the setting of possible dialysis withdrawal, an aspect of care highlighted by both the Renal Physicians’ Association and the KDIGO Controversies Conference on supportive care.

Although these are important steps in aiming to achieve patient-centered kidney disease care, other measures need to be incorporated that allow clinicians to align with their patients’ preferences, needs, and values. Additionally, most existing kidney disease–specific PROMs focus on the in-center hemodialysis experience, and current policy initiatives do the same. Vast opportunity exists for PROMs to be incorporated into quality metrics for CKD and posttransplantation care.
<table>
<thead>
<tr>
<th>Measure</th>
<th>Domains and Subscales</th>
<th>Original Population for Use</th>
<th>Content Validity</th>
<th>Reliability and Responsiveness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Category Checklist</td>
<td>Body functions, body structures, activities and participation, environmental factors</td>
<td>ESKD</td>
<td>Qualitative interviews of 32 HD pts w/ vintage > 5 y; content experts</td>
<td></td>
<td>Data from qualitative interviews not reviewed by content experts; sample mostly white men > 65 y w/ DM</td>
</tr>
<tr>
<td>Agarwal CKD symptom assessment</td>
<td>Past mo: neuropsychiatric, cardiovascular, uremia, anemia</td>
<td>CKD</td>
<td>Qualitative interviews conducted by primary author w/ CKD pts known to primary author; extensive literature review</td>
<td>Reliable after 2 mo</td>
<td>Ceiling effects for physical burden, fatigue, emotional burden subscales; floor effects for physical burden, fatigue, emotional burden subscales; significant differences on subscale scores for pts w/ CKD1 vs CKD3b; need further exploration of ADPKD-related pain</td>
</tr>
<tr>
<td>Autosomal Dominant Polycystic Kidney Disease Impact Scale (ADPKD-IS)</td>
<td>Physical burden, fatigue, emotional burden</td>
<td>ADPKD</td>
<td>Literature review; focus groups of 285 ADPKD pts from 16 countries; cognitive debriefing interviews of 15 pts; expert interviews of 26 health care providers; clinical evaluation in 6-mo intervals for up to 3 y</td>
<td>Reliable after 1 mo</td>
<td></td>
</tr>
<tr>
<td>Basel Assessment of Adherence to Immunosuppressive Medication Scales (BAASIS)</td>
<td>Past mo: taking medications, timing of medications, omitting medications, dose reduction of medications</td>
<td>kidney Tx pts on IS</td>
<td></td>
<td></td>
<td>Data from 3 dialysis centers in Hong Kong area (limits external validity)</td>
</tr>
<tr>
<td>Chinese Dialysis Quality of Life Scale (CDQOL)</td>
<td>Overall QoL, ESKD</td>
<td>ESKD</td>
<td>Literature review; qualitative interviews of 7 ESKD pts; 2 rounds of content analysis</td>
<td>Reliable after 2 wk</td>
<td></td>
</tr>
<tr>
<td>Chronic Kidney Disease-Symptom Burden Index (CKD-SBI)</td>
<td>Past mo: prevalence of symptoms, symptom distress, symptom severity, frequency of symptoms</td>
<td>CKD, ESKD</td>
<td>Literature review; expert panel; pilot-testing w/ bilingual non-CKD sample of 25 participants</td>
<td>Reliable after 1 wk</td>
<td>Reliability only measured in mostly healthy university students; test-retest reliability measured only 1 wk apart; participants may have memorized responses</td>
</tr>
<tr>
<td>CHOICE Health Experience Questionnaire (CHEQ)</td>
<td>Past mo: health perceptions, physical, social, physical role, emotional role, pain, mental health, energy, cognitive functioning, sexual functioning, sleep, work, recreation, travel, finances, general QoL, diet, freedom, body image, dialysis access, symptoms</td>
<td>ESKD</td>
<td>Structured literature review of 53 different instruments; 5 focus groups w/ HD pts, PD pts, nephrologists; survey of 110 dialysis providers re features of different modalities; semistructured survey of 25 ESKD pts</td>
<td></td>
<td>Several subscales had moderate floor and ceiling effects</td>
</tr>
<tr>
<td>Chronic Kidney Disease Quality of Life (CKD QOL)</td>
<td>Past mo: role functioning, energy/ fatigue, social functioning, psychological distress/well-being, life interference, limitations in ability to concentrate</td>
<td>CKD, ESKD (inc post-Tx)</td>
<td>Review of items from CHEQ; interviews w/ 40 pts w/ CKD3-5 or ESKD; recommendations from a clinical advisory board; cognitive testing of patients w/ CKD</td>
<td></td>
<td>Mostly white patients</td>
</tr>
<tr>
<td>Curtin et al</td>
<td>Past mo: fatigue/sleep, sexual concerns, mobility</td>
<td>ESKD</td>
<td>Literature review; >100 interviews of ESKD pts</td>
<td></td>
<td>Symptoms reported may not apply to majority of ESKD pts (sample had fewer w/ DM and more w/ unknown cause of kidney disease)</td>
</tr>
<tr>
<td>Measure</td>
<td>Domains and Subscales</td>
<td>Original Population for Use</td>
<td>Content Validity</td>
<td>Reliability and Responsiveness</td>
<td>Limitations</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dialysis Symptom Index (DSI)<sup>27</sup></td>
<td>Past wk: physical symptom burden, symptom severity</td>
<td>ESKD</td>
<td>Literature review of previous health-related QoL surveys, inc. CHEQ and KDQOL-SF; qualitative interviews of focus groups (2 w/ dialysis pts, 1 w/ nephrologists); expert review</td>
<td>Reliable after 4-7 d</td>
<td>Scale administered during HD, which may have reflected answers related to dizziness (hypotension-induced); focus groups were small</td>
</tr>
<tr>
<td>End-Stage Renal Disease Severity Index (ESRD-SI)<sup>28</sup></td>
<td>Cardiovascular, cerebrovascular, bone disease, peripheral vascular disease, peripheral neuropathy, respiratory disease, deficient vision, autonomic neuropathy, GI disease, dialytic access and events, DM</td>
<td>ESKD</td>
<td>Meetings among clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Stage Renal Disease-Symptom Checklist Transplantation Module (ESRD-SCLTM)<sup>29</sup></td>
<td>Limited physical capacity, limited cognitive capacity, cardiac and renal dysfunction, side effects of corticosteroids, increased growth of gum and hair, Tx-associated psychological distress</td>
<td>ESKD</td>
<td>Based on 458 pt interviews; GN was most common cause for need for Tx</td>
<td>Reliable after 1 y</td>
<td>Scale only applied to pts w/ successful Tx; would need further studies of pts before and after Tx</td>
</tr>
<tr>
<td>Ferrans and Powers Quality of Life Index<sup>30</sup></td>
<td>Health care, physical health and functioning, marriage, family, friends, stress, standard of living, occupation, education, leisure, future retirement, peace of mind, faith, life goals, personal appearance, self-acceptance, general happiness, general satisfaction, 3 additional dialysis-specific scales</td>
<td>ESKD</td>
<td>Reliable after 2 wk</td>
<td>Reliability may have been overestimated</td>
<td></td>
</tr>
<tr>
<td>Focal Segmental Glomerulosclerosis (FSGS) Symptom Diary<sup>31</sup>; FSGS Symptom Impact Questionnaire<sup>31</sup></td>
<td>Past 24 h (Diary) or 7 d (Questionnaire): physical symptoms, social issues, emotional symptoms</td>
<td>primary FSGS pts w/ GFR > 40 w/ inadequately controlled disease after ≤ 2 treatments</td>
<td>Concept elicitation interviews based on semi-structured interview guide developed specifically for this project; cognitive debriefing interviews conducted to assess content, clarity, comprehensiveness, relevance</td>
<td>Sample mostly white women w/ college degree; most debriefing interviews were performed by Latino/Hispanic men w/ less college exposure; no pts w/ GFR < 40</td>
<td></td>
</tr>
<tr>
<td>Fluid Management Survey<sup>32</sup></td>
<td>Volume overload, symptom burden, fluid management strategy, preferences, dialysis treatment characteristics, physical function, demographics</td>
<td>ESKD</td>
<td>Literature review; surveys at 18 geographically diverse dialysis facilities; content reviewed by dialysis professionals; field-tested for pt comprehension w/ 50 ESKD pts and repeated 2 wk later among 48 ESKD pts</td>
<td>Reliable after 2 wk</td>
<td>Some dialysis unit and demographic data were self-reported; incorrect reporting may have introduced misclassification bias</td>
</tr>
<tr>
<td>Hemodialysis Fatigue Scale<sup>33</sup></td>
<td>Reduction in vigor and motivation, reduction in physical ability, reduction in mental ability, reduction in daily activities, distress and loss of control in mood</td>
<td>ESKD</td>
<td>Specific to pts in Taiwan (limits external validity)</td>
<td>(Continued)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (Cont’d). Summary, Key Characteristics, and Limitations of Current Patient-Reported Outcome Measures Developed for Adults With Kidney Disease

<table>
<thead>
<tr>
<th>Measure</th>
<th>Domains and Subscales</th>
<th>Original Population for Use</th>
<th>Content Validity</th>
<th>Reliability and Responsiveness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodialysis Quality of Life Questionnaire (HQL)</td>
<td>Symptoms related to ESKD, symptoms related to treatments, mood, sociovocational, family-sexual</td>
<td>ESKD</td>
<td>Concept elicitation and prioritization from 75 ESKD pts and 13 health care professionals</td>
<td>Small sample size</td>
<td></td>
</tr>
<tr>
<td>Hemodialysis Stressor Scale (HSS)</td>
<td>Total stress, physiologic stress, psychosocial stress</td>
<td>ESKD</td>
<td>Literature review; review by 6 dialysis nurses; pilot tested with ESKD pts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Behavior Inventory (KDBI)</td>
<td>Past mo: behaviors associated with improved kidney health (diet control, medication adherence, etc)</td>
<td>CKD, ESKD</td>
<td>Reliable after 3 and 6 mo</td>
<td>Behaviors not objectively verified</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Questionnaire (KDQ)</td>
<td>Physical symptoms, fatigue, depression, relationships with others, frustration</td>
<td>ESKD</td>
<td>Qualitative interviews of 50 ESKD pts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Quality of Life (KDOQL) Path</td>
<td>Symptoms/problems, effects of kidney disease, burden of kidney disease, work status, cognitive function, quality of social interaction, sexual function, sleep, social support, dialysis staff encouragement, patient satisfaction, physical functioning, role physical, pain, general health perceptions, emotional well-being, role emotional, social function, energy/fatigue</td>
<td>ESKD</td>
<td>Focus groups of sample ESKD pts</td>
<td>Floor effects for work status, role physical, role emotional; ceiling effects for sexual function, role emotion</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Quality of Life Short Form (KDOQL-SF) Version 1.3</td>
<td>SF-12 core, burden of kidney disease, symptoms and problems of kidney disease</td>
<td>ESKD</td>
<td>Focus groups of sample ESKD pts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Quality of Life-36 (KDOQL-36)</td>
<td>Burdens of kidney disease, symptoms and problems of kidney disease, effects of kidney disease</td>
<td>ESKD</td>
<td>Focus groups of sample ESKD pts</td>
<td>Ceiling effects for effects of kidney disease subscale; data collected as part of a clinical intervention, so sample may reflect selection bias</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Quality of Life Modified</td>
<td>Pain, psychological dependency, cognitive functioning, social functioning, dialysis-related symptoms, cardiopulmonary symptoms, sleep, energy, cramps, diet, appetite</td>
<td>ESKD</td>
<td>Ceiling effects for cognitive functioning, appetite subscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney Disease Quality of Life-36 Summary Score (KSS)</td>
<td>Burdens of kidney disease, symptoms and problems of kidney disease, effects of kidney disease</td>
<td>ESKD</td>
<td>58,851 ESKD pts from Medical Education Institute KDOQL Complete program; 443,947 ESKD pts from USRDS</td>
<td>Does not include measures of fatigue or mental health</td>
<td></td>
</tr>
<tr>
<td>Kidney Transplant Questionnaire (KTQ)</td>
<td>Physical symptoms, fatigue, uncertainty/fear, appearance and emotions</td>
<td>kidney Tx</td>
<td>Qualitative interviews of 50 pts</td>
<td>Responsive after 6 mo</td>
<td></td>
</tr>
<tr>
<td>Modified Transplant Symptom Occurrence and Symptom Distress Scale (MTSOSD)</td>
<td>Side effects and symptoms of immunosuppressants</td>
<td>kidney Tx pts on IS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>Domains and Subscales</td>
<td>Original Population for Use</td>
<td>Content Validity</td>
<td>Reliability and Responsiveness</td>
<td>Limitations</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Palliative Care Outcome Scale</td>
<td>Symptom burden and general QoL</td>
<td>Symptom burden and general QoL</td>
<td>Interviews of 107 ESKD pts and 119 Tx pts</td>
<td></td>
<td>Specific psychometric properties not reported</td>
</tr>
<tr>
<td>– Symptoms (POS-S) (Renal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parfrey Symptom Assessment</td>
<td>Physical symptoms, emotional symptoms, subjective QoL, objective QoL</td>
<td>ESKD (inc kidney Tx)</td>
<td>Literature review; investigator's personal clinical experience</td>
<td>Reliable after 2 wk</td>
<td>Specific to patients in Taiwan (limits external validity)</td>
</tr>
<tr>
<td>Physical Symptom Distress Scale</td>
<td>Previous wk: fluid and electrolyte imbalance, disturbance in neuromuscular function</td>
<td>ESKD</td>
<td>Literature review; investigator's personal clinical experience</td>
<td>Reliable after 2 wk</td>
<td>Specific to patients in Taiwan (limits external validity)</td>
</tr>
<tr>
<td>Perceived Kidney Disease Self-</td>
<td>Self-confidence in kidney disease self-management</td>
<td>CKD, ESKD</td>
<td>Reliable after 3 and 6 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Scale (PKDSMS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh Symptom Score Index</td>
<td>Fatigue, trouble sleeping, difficulty concentrating, restless legs, change in taste, loss of appetite, nausea or vomiting, pruritus, bone pain, muscle pain, weakness</td>
<td>ESKD</td>
<td>Literature review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of Life Index (QLI) 3.0</td>
<td>General QoL</td>
<td>ESKD</td>
<td>Literature review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal Dependent Quality of Life</td>
<td>Illness impact and general QoL</td>
<td>HD/ PD, kidney Tx</td>
<td>Qualitative interviews of 40 HD, PD, and Tx pts</td>
<td>Specific psychometric properties not reported</td>
<td></td>
</tr>
<tr>
<td>Questionnaire (RDOQL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReTransQol (RTQ) 50</td>
<td>Past mo: physical health, mental health, medical care, fear of losing graft, treatment</td>
<td>kidney Tx</td>
<td>In-depth interviews cognitive debriefing in 10 pts</td>
<td>Reliable after 6 mo</td>
<td>Specific to pts in France (limits external validity)</td>
</tr>
<tr>
<td>Short-Version Checklist 51</td>
<td>Body functions, body structures, activities and participation, environmental factors</td>
<td>ESKD</td>
<td>Based on 100 Category Checklist</td>
<td></td>
<td>Specific to pts in Japan (limits external validity)</td>
</tr>
<tr>
<td>Transplant Effects Questionnaire</td>
<td>Worry about Tx, guilt regarding donor, disclosure, adherence, responsibility</td>
<td>kidney Tx</td>
<td>Literature review; focus groups; individual interviews</td>
<td>Reliable after 1 mo</td>
<td></td>
</tr>
<tr>
<td>(TxEQ) 52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World Health Organization</td>
<td>WHOQOL-BREF, physical, psychological, social, relationship, environment</td>
<td>ESKD</td>
<td>Focus group of 10 ESKD pts and 3 nephrologists</td>
<td>Reliable at 1-2 mo</td>
<td>Specific to patients in Taiwan (limits external validity)</td>
</tr>
<tr>
<td>Quality of Life Brief Scale in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialysis (WHOQOL-BREF Dialysis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; CKD, chronic kidney disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate (in mL/min/1.73 m²); ESKD, end-stage kidney disease; FSGS, focal segmental glomerulosclerosis; GI, gastrointestinal; GN, glomerulonephritis; HD, hemodialysis; inc, including; IS, immunosuppression; PD, peritoneal dialysis; pt, patient; QoL, quality of life; Tx, transplantation; USRDS, US Renal Data System.

aIncluding recall period if available.
PROMs in Nephrology Clinical Care: Acknowledging Challenges and Addressing Unmet Needs

The need to develop PROMs specific to kidney disease subtypes is being prioritized both in the United States and abroad. During a symposium between the National Kidney Foundation and the FDA consisting of nephrologists, patients, and representatives from the pharmaceutical industry and the National Institutes of Health, ADPKD and nephrotic syndrome were determined to be conditions amenable to future measure development. The added value of rigorously developed and individualized PROMs is clear, but it is important to note the barriers that exist in their assessment and uptake in a health system. No standards exist to guide providers on how to elicit PROMs from their patients or how best to incorporate them into a patient’s medical record and care plan. It has also been demonstrated that certain PROMs vary over time and thus need to be assessed at routine intervals. Patient burden, which includes factors such as measure length, time to completion, and comprehension, should be taken into account, though some evidence suggests that daily PROM collection is feasible. It also remains unknown how to aggregate data obtained from PROMs to be used as performance measures in health care systems, and PROMs are not yet routinely incorporated into risk stratification models for kidney disease. PROMs must also be made suitable for long-term data collection and administered in interactive ways that accurately capture individualized patient information and decrease repetitive testing. In addition to encouraging the use of adaptive questionnaires, researchers have pointed to ecological momentary assessments, or capturing PROMs as patients experience them in real time as a viable path forward to overcome some of these barriers. Ultimately, if the ascertainment of PROMs occurs in conjunction with objective markers of kidney disease severity or progression, a more comprehensive picture of a patient’s clinical status can be obtained, and effective communication between patients and providers regarding key issues can be facilitated.

Guidelines exist that provide a general framework for the successful implementation of PROMs in health care. The Patient-Centered Outcomes Research Institute (PCORI) released a set of standards to inform future PROM development: establish psychometric validity, minimize participant burden, confirm interpretation of a meaningful change, disseminate results to patients and clinicians, incorporate health information technology, and include patients with poorer health literacy. Informed by these guidelines, we conclude with a list of key considerations to inform best practices for seamless PROM implementation and uptake into patient-centered kidney care (Box 1).

Conclusions

A European Renal Association and European Dialysis and Transplant Association Quality European Studies–funded consensus meeting emphasized the need to capitalize on the increasing recognition of PROMs, use the power of patient organizations to lobby legislators, develop a PROM registry, involve expert psychometricians at all stages of development and design, and continue to generate widespread public and stakeholder interest. Patient stakeholders in a recent SONG implementation workshop stressed the need for researchers to convey to their

Box 1. Key Considerations for Successful Implementation and Uptake of PROMs Into Patient-Centered Kidney Disease Care

- Sample characteristics of patients likely to receive greatest benefit from PROMs
 - Unknown to the nephrologist, clinic, or dialysis facility
 - Uncertain disease prognosis
 - Newly diagnosed with kidney disease
 - Recent dialysis start
 - Recent kidney transplant
 - Advancing CKD and approaching dialysis
 - Failing kidney transplant
 - Multiple comorbid conditions
 - History of behavioral issues
 - Increasingly caregiver dependent
 - Extremes of age
- Method and mode of collection
 - Self-administered online surveys via tablet computer or smartphone
 - Nurse-administered online surveys via tablet computer
- Setting and time of collection
 - Clinic intake room before appointment (CKD/transplant)
 - Dialysis facility during dialysis treatment
 - Home during home dialysis session
 - At home between clinical appointments or dialysis sessions (via ecological momentary assessment)
- Storage
 - Integration into electronic medical record with password-protected access
- Interpretation
 - Incorporation into risk prediction models
 - Comparison with national benchmarks (ie, via USRDS data)
- Dissemination
 - Regular sharing of results with patients, caregivers, and clinicians
- Action
 - Targeted, individualized treatments based on results (referral to psychologist, change in dialysis prescription, etc)

Abbreviations: CKD, chronic kidney disease; PROMs, patient-reported outcome measures; USRDS, US Renal Data System.
nephrology colleagues the importance of PROMs, clarify PROM intent and meaning, foster trust in the rigor of PROM development, and ultimately articulate a compelling case for a culture change.1,2

PROMs are unique in that they allow us to ascertain whether our actions and treatment decisions improve outcomes that matter most to patients. Challenges to developing and operationalizing PROMs into the care of patients with kidney disease persist, but immense opportunities remain. The thoughtful incorporation of these instruments has the potential to provide deep insights into a patient’s illness experience, advance knowledge gained from clinical trials, transform policy initiatives, and ultimately individualize high quality care for patients with kidney disease.

Article Information

Authors’ Full Names and Academic Degrees: Devika Nair, MD, MScI, and F. Perry Wilson, MD, MSCE.

Authors’ Affiliations: Vanderbilt University Medical Center (DN) and Vanderbilt Center for Kidney Disease (DN), Nashville, TN; and Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT (FPW).

Address for Correspondence: F. Perry Wilson, MD, MSCE, Program of Applied Translational Research, Yale University School of Medicine, 60 Temple St, Ste 6C, New Haven, CT 06510. E-mail: francis.p.wilson@yale.edu

Support: This work was supported by grants 5T32DK007569-30 (to Dr Nair) and R01DK113191 and P30DK079310 (to Dr Wilson).

Financial Disclosure: The authors declare that they have no relevant financial interests.

Other Disclosures: Dr Nair was a member of the 2018 class of AJKD Editorial Interns; she was fully recused from any involvement in the manuscript consideration process.

Acknowledgements: The authors thank Melissa Martin, MS, Research Associate at the Yale School of Medicine Program for Applied Translational Research, for contributions in editing this work.

Peer Review: Received January 30, 2019, in response to an invitation from the journal. Evaluated by 3 external peer reviewers, with direct editorial input from an Associate Editor and a Deputy Editor. Accepted in revised form May 11, 2019.

References

23. Almutayy H, Bonner A, Douglas C. Arabic translation, adaptation and modification of the dialysis symptom index for

