Advertisement
American Journal of Kidney Diseases

Association of the Urine-to-Plasma Urea Ratio With CKD Progression

Published:November 07, 2022DOI:https://doi.org/10.1053/j.ajkd.2022.09.010

      Abstract

      Rationale & Objectives

      The urine-to-plasma ratio of urea ([U/P]urea) is correlated with urine concentrating capacity and associated with progression of autosomal dominant polycystic kidney disease. As a proposed biomarker of tubular function, we hypothesized that [U/P]urea would also be associated with progression of more common forms of chronic kidney disease (CKD).

      Study Design

      Observational cohort study.

      Setting & Participants

      3,723 adults in the USA with estimated glomerular filtration rate (eGFR) of 20-70 mL/min per 1.73m
      • Gansevoort R.T.
      • Matsushita K.
      • van der Velde M.
      • et al.
      Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.
      , enrolled in the Chronic Renal Insufficiency Cohort Study.

      Exposure

      [U/P]urea, calculated from 24-hour urine collections and plasma samples at baseline.

      Outcomes

      Associations of [U/P]urea with eGFR slope, incident end-stage kidney disease (ESKD), and CKD progression, defined as 50% decline in eGFR or incident ESKD.

      Analytical Approach

      Multivariable linear mixed-effects models tested associations with eGFR slope. Cox proportional hazards models tested associations with dichotomous CKD outcomes.

      Results

      Median (interquartile range) [U/P]urea was 14.8 (IQR, 9.5-22.2). Compared to participants in the highest [U/P]urea quintile, those in the lowest quintile had a greater eGFR decline by 1.06 ml/min per 1.73m
      • Gansevoort R.T.
      • Matsushita K.
      • van der Velde M.
      • et al.
      Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.
      per year (P<0.001) over 7.0 (IQR, 3.0-11.0) years of follow-up. Each 1 standard deviation decrease in natural log-transformed [U/P]urea was independently associated with CKD progression (HR 1.22, 95% CI 1.12-1.33) and incident ESKD (HR 1.22, 95% CI 1.10-1.33). Associations differed by baseline eGFR (p-interaction=0.009). Among those with an eGFR ≥30 ml/min per 1.73m
      • Gansevoort R.T.
      • Matsushita K.
      • van der Velde M.
      • et al.
      Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.
      , each 1 standard deviation decrease in log-[U/P]urea was independently associated with CKD progression (HR 1.30, 95% CI 1.18-1.45), but this was not significant among those with eGFR <30 ml/min per 1.73m
      • Gansevoort R.T.
      • Matsushita K.
      • van der Velde M.
      • et al.
      Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.
      (HR 1.00, 95% CI 0.84-1.20).

      Limitations

      Possibility of residual confounding. Single baseline 24-hour urine collection for [U/P]urea.

      Conclusions

      In a large and diverse cohort of patients with common forms of CKD, [U/P]urea was independently associated with disease progression and incident kidney failure. Associations were not significant among those with advanced CKD at baseline.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Kidney Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References:

        • Levin A.
        • Stevens P.E.
        Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward.
        Kidney Int. 2014; 85: 49-61https://doi.org/10.1038/ki.2013.444
        • Gansevoort R.T.
        • Matsushita K.
        • van der Velde M.
        • et al.
        Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.
        Kidney Int. 2011; 80: 93-104https://doi.org/10.1038/ki.2010.531
        • Matsushita K.
        • van der Velde M.
        • et al.
        • Chronic Kidney Disease Prognosis Consortium
        Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis.
        Lancet (London, England). 2010; 375: 2073-2081https://doi.org/10.1016/S0140-6736(10)60674-5
        • Hemmelgarn B.R.
        • Manns B.J.
        • Lloyd A.
        • et al.
        Relation between kidney function, proteinuria, and adverse outcomes.
        JAMA. 2010; 303: 423-429https://doi.org/10.1001/jama.2010.39
        • Massicotte-Azarniouch D.
        • Bader Eddeen A.
        • Lazo-Langner A.
        • et al.
        Risk of Venous Thromboembolism in Patients by Albuminuria and Estimated GFR.
        Am J Kidney Dis. 2017; 70: 826-833https://doi.org/10.1053/j.ajkd.2017.07.003
        • Weiner D.E.
        • Gaussoin S.A.
        • Nord J.
        • et al.
        Cognitive Function and Kidney Disease: Baseline Data From the Systolic Blood Pressure Intervention Trial (SPRINT).
        Am J Kidney Dis. 2017; 70: 357-367https://doi.org/10.1053/j.ajkd.2017.04.021
        • Dooley A.C.
        • Weiss N.S.
        • Kestenbaum B.
        Increased risk of hip fracture among men with CKD.
        Am J Kidney Dis. 2008; 51: 38-44https://doi.org/10.1053/j.ajkd.2007.08.019
        • Xu H.
        • Matsushita K.
        • Su G.
        • et al.
        Estimated Glomerular Filtration Rate and the Risk of Cancer.
        Clin J Am Soc Nephrol. 2019; 14: 530-539https://doi.org/10.2215/CJN.10820918
        • Bankir L.
        • Bouby N.
        • Ritz E.
        Vasopressin: a novel target for the prevention and retardation of kidney disease?.
        Nat Rev Nephrol. 2013; 9: 223-239https://doi.org/10.1038/nrneph.2013.22
        • Bankir L.
        • Bichet D.G.
        Polycystic kidney disease: An early urea-selective urine-concentrating defect in ADPKD.
        Nat Rev Nephrol. 2012; 8: 437-439https://doi.org/10.1038/nrneph.2012.139
        • Heida J.E.
        • Gansevoort R.T.
        • Messchendorp A.L.
        • et al.
        Use of the urine-to-plasma urea ratio to predict ADPKD progression.
        Clin J Am Soc Nephrol. 2021; 16: 204-212https://doi.org/10.2215/CJN.10470620
        • Zittema D.
        • Boertien W.E.
        • van Beek A.P.
        • et al.
        Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment.
        Clin J Am Soc Nephrol. 2012; 7: 906-913https://doi.org/10.2215/CJN.11311111
        • Ho T.A.
        • Godefroid N.
        • Gruzon D.
        • et al.
        Autosomal dominant polycystic kidney disease is associated with central and nephrogenic defects in osmoregulation.
        Kidney Int. 2012; 82: 1121-1129https://doi.org/10.1038/ki.2012.225
        • Denker M.
        • Boyle S.
        • Anderson A.H.
        • et al.
        Chronic Renal Insufficiency Cohort Study (CRIC): Overview and Summary of Selected Findings.
        Clin J Am Soc Nephrol. 2015; 10: 2073-2083https://doi.org/10.2215/CJN.04260415
        • Feldman H.I.
        • Appel L.J.
        • Chertow G.M.
        • et al.
        The Chronic Renal Insufficiency Cohort (CRIC) Study: Design and Methods.
        J Am Soc Nephrol. 2003; 14: S148-S153https://doi.org/10.1097/01.asn.0000070149.78399.ce
        • Shou H.
        • Hsu J.Y.
        • Xie D.
        • et al.
        Analytic Considerations for Repeated Measures of eGFR in Cohort Studies of CKD.
        Clin J Am Soc Nephrol. 2017; 12: 1357-1365https://doi.org/10.2215/CJN.11311116
        • Anderson A.H.
        • Yang W.
        • Hsu C.
        • et al.
        Estimating GFR among participants in the Chronic Renal Insufficiency Cohort (CRIC) Study.
        Am J Kidney Dis. 2012; 60: 250-261https://doi.org/10.1053/j.ajkd.2012.04.012
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612https://doi.org/10.7326/0003-4819-150-9-200905050-00006
        • Leffondre K.
        • Boucquemont J.
        • Tripepi G.
        • Stel V.S.
        • Heinze G.
        • Dunkler D.
        Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches.
        Nephrol Dial Transplant. 2015; 30: 1237-1243https://doi.org/10.1093/ndt/gfu320
        • He J.
        • Mills K.T.
        • Appel L.J.
        • et al.
        Urinary Sodium and Potassium Excretion and CKD Progression.
        J Am Soc Nephrol. 2016; 27: 1202-1212https://doi.org/10.1681/ASN.2015010022
        • Hannan M.
        • Ansari S.
        • Meza N.
        • et al.
        Risk Factors for CKD Progression: Overview of Findings from the CRIC Study.
        Clin J Am Soc Nephrol. 2021; 16: 648-659https://doi.org/10.2215/CJN.07830520
        • Fine J.P.
        • Gray R.J.
        A Proportional Hazards Model for the Subdistribution of a Competing Risk.
        J Am Stat Assoc. 1999; 94: 496-509https://doi.org/10.2307/2670170
        • PERLMUTTER M.
        • GROSSMAN S.L.
        • ROTHENBERG S.
        • DOBKIN G.
        Urineserum urea nitrogen ratio; simple test of renal function in acute azotemia and oliguria.
        J Am Med Assoc. 1959; 170: 1533-1537https://doi.org/10.1001/jama.1959.03010130037010
        • Miller T.R.
        • Anderson R.J.
        • Linas S.L.
        • et al.
        Urinary diagnostic indices in acute renal failure: a prospective study.
        Ann Intern Med. 1978; 89: 47-50https://doi.org/10.7326/0003-4819-89-1-47
        • Jiang T.
        • Li Y.
        • Layton A.T.
        • et al.
        Generation and phenotypic analysis of mice lacking all urea transporters.
        Kidney Int. 2017; 91: 338-351https://doi.org/10.1016/j.kint.2016.09.017
        • Bankir L.
        • Bouby N.
        • Trinh-Trang-Tan M.-M.
        • Ahloulay M.
        • Promeneur D.
        Direct and indirect cost of urea excretion.
        Kidney Int. 1996; 49: 1598-1607https://doi.org/10.1038/ki.1996.232
        • Bankir L.
        • Ahloulay M.
        • Bouby N.
        • et al.
        Is the process of urinary urea concentration responsible for a high glomerular filtration rate?.
        J Am Soc Nephrol. 1993; 4: 1091-1103https://doi.org/10.1681/ASN.V451091
        • Weiner I.D.
        • Mitch W.E.
        • Sands J.M.
        Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.
        Clin J Am Soc Nephrol. 2015; 10: 1444-1458https://doi.org/10.2215/CJN.10311013
        • Fenton R.A.
        • Flynn A.
        • Shodeinde A.
        • Smith C.P.
        • Schnermann J.
        • Knepper M.A.
        Renal Phenotype of UT-A Urea Transporter Knockout Mice.
        J Am Soc Nephrol. 2005; 16: 1583-1592https://doi.org/10.1681/ASN.2005010031
        • Bouby N.
        • Ahloulay M.
        • Nsegbe E.
        • Déchaux M.
        • Schmitt F.
        • Bankir L.
        Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action.
        J Am Soc Nephrol. 1996; 7: 842-851
        • Kawamura S.
        • Kokko J.P.
        Urea secretion by the straight segment of the proximal tubule.
        J Clin Invest. 1976; 58: 604-612https://doi.org/10.1172/JCI108507
        • Safirstein R.
        • Miller P.
        • Dikman S.
        • Lyman N.
        • Shapiro C.
        Cisplatin nephrotoxicity in rats: defect in papillary hypertonicity.
        Am J Physiol Physiol. 1981; 241: F175-F185https://doi.org/10.1152/ajprenal.1981.241.2.F175
        • Layton A.T.
        • Bankir L.
        Impacts of active urea secretion into pars recta on urine concentration and urea excretion rate.
        Physiol Rep. 2013; 1https://doi.org/10.1002/phy2.34
        • Bankir L.
        Active Urea Transport in Lower Vertebrates and Mammals.
        Subcell Biochem. 2014; : 193-226https://doi.org/10.1007/978-94-017-9343-8_13
        • Pedersen E.B.
        • Thomsen I.M.
        • Lauridsen T.G.
        Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study.
        BMC Nephrol. 2010; 11: 26https://doi.org/10.1186/1471-2369-11-26
        • Conte G.
        • Canton A.D.
        • Fuiano G.
        • et al.
        Mechanism of impaired urinary concentration in chronic primary glomerulonephritis.
        Kidney Int. 1985; 27: 792-798https://doi.org/10.1038/ki.1985.82
        • Cirillo M.
        • Bilancio G.
        • Lombardi C.
        • et al.
        Osmotic indices and kidney concentrating activity: Population-based data on correlates and prognostic power.
        Nephrol Dial Transplant. 2018; 33: 274-283https://doi.org/10.1093/ndt/gfw426
        • Hebert L.A.
        • Greene T.
        • Levey A.
        • Falkenhain M.E.
        • Klahr S.
        High urine volume and low urine osmolality are risk factors for faster progression of renal disease.
        Am J Kidney Dis. 2003; 41: 962-971https://doi.org/10.1016/s0272-6386(03)00193-8
        • Torres V.E.
        • Harris P.C.
        • Pirson Y.
        Autosomal dominant polycystic kidney disease.
        Lancet. 2007; 369: 1287-1301https://doi.org/10.1016/S0140-6736(07)60601-1
        • Tabibzadeh N.
        • Wagner S.
        • Metzger M.
        • et al.
        Fasting Urinary Osmolality, CKD Progression, and Mortality: A Prospective Observational Study.
        Am J Kidney Dis. 2019; 73: 596-604https://doi.org/10.1053/j.ajkd.2018.12.024
        • Nath K.A.
        Tubulointerstitial changes as a major determinant in the progression of renal damage.
        Am J Kidney Dis. 1992; 20: 1-17https://doi.org/10.1016/s0272-6386(12)80312-x
        • Nangaku M.
        Chronic Hypoxia and Tubulointerstitial Injury: A Final Common Pathway to End-Stage Renal Failure.
        J Am Soc Nephrol. 2006; 17: 17-25https://doi.org/10.1681/ASN.2005070757
        • Srivastava A.
        • Palsson R.
        • Kaze A.D.
        • et al.
        The Prognostic Value of Histopathologic Lesions in Native Kidney Biopsy Specimens: Results from the Boston Kidney Biopsy Cohort Study.
        J Am Soc Nephrol. 2018; 29: 2213-2224https://doi.org/10.1681/ASN.2017121260
        • Zittema D.
        • Casteleijn N.F.
        • Bakker S.J.L.
        • et al.
        Urine Concentrating Capacity, Vasopressin and Copeptin in ADPKD and IgA Nephropathy Patients with Renal Impairment.
        PLoS One. 2017; 12e0169263https://doi.org/10.1371/journal.pone.0169263
        • Malmberg M.H.
        • Mose F.H.
        • Pedersen E.B.
        • Bech J.N.
        Urine concentration ability is reduced to the same degree in adult dominant polycystic kidney disease compared with other chronic kidney diseases in the same CKD-stage and lower THAN in healthy control subjects - a CASE control study.
        BMC Nephrol. 2020; 21: 379https://doi.org/10.1186/s12882-020-02043-w
        • Levinsky N.G.
        • Berliner R.W.
        THE ROLE OF UREA IN THE URINE CONCENTRATING MECHANISM.
        J Clin Invest. 1959; 38: 741-748https://doi.org/10.1172/JCI103854
        • Fenton R.A.
        • Chou C.-L.
        • Sowersby H.
        • Smith C.P.
        • Knepper M.A.
        Gamble’s “economy of water” revisited: studies in urea transporter knockout mice.
        Am J Physiol Renal Physiol. 2006; 291: F148-F154https://doi.org/10.1152/ajprenal.00348.2005
        • Teitelbaum I.
        • McGuinness S.
        Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA.
        J Clin Invest. 1995; 96: 378-385https://doi.org/10.1172/JCI118044
        • Amlal H.
        • Krane C.M.
        • Chen Q.
        • Soleimani M.
        Early polyuria and urinary concentrating defect in potassium deprivation.
        Am J Physiol Physiol. 2000; 279: F655-F663https://doi.org/10.1152/ajprenal.2000.279.4.F655
        • Rubini M.E.
        WATER EXCRETION IN POTASSIUM-DEFICIENT MAN.
        J Clin Invest. 1961; 40: 2215-2224
        • Bennett C.M.
        Urine concentration and dilution in hypokalemic and hypercalcemic dogs.
        J Clin Invest. 1970; 49: 1447-1457https://doi.org/10.1172/JCI106362
        • Elger M.
        • Bankir L.
        • Kriz W.
        Morphometric analysis of kidney hypertrophy in rats after chronic potassium depletion.
        Am J Physiol Physiol. 1992; 262: F656-F667https://doi.org/10.1152/ajprenal.1992.262.4.F656
        • Jung J.-Y.
        • Madsen K.M.
        • Han K.-H.
        • et al.
        Expression of urea transporters in potassium-depleted mouse kidney.
        Am J Physiol Physiol. 2003; 285: F1210-F1224https://doi.org/10.1152/ajprenal.00111.2003
        • Ikizler T.A.
        • Burrowes J.D.
        • Byham-Gray L.D.
        • et al.
        KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update.
        Am J Kidney Dis. 2020; 76: S1-S107https://doi.org/10.1053/j.ajkd.2020.05.006
        • Ko G.-J.
        • Rhee C.M.
        • Kalantar-Zadeh K.
        • Joshi S.
        The Effects of High-Protein Diets on Kidney Health and Longevity.
        J Am Soc Nephrol. 2020; 31: 1667-1679https://doi.org/10.1681/ASN.2020010028
        • Palsson R.
        • Waikar S.S.
        Renal Functional Reserve Revisited.
        Adv Chronic Kidney Dis. 2018; 25: e1-e8https://doi.org/10.1053/j.ackd.2018.03.001
        • Bankir L.
        • Roussel R.
        • Bouby N.
        Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea.
        Am J Physiol Physiol. 2015; 309: F2-F23https://doi.org/10.1152/ajprenal.00614.2014
        • Curran-Everett D.
        Explorations in statistics: The analysis of ratios and normalized data.
        Am J Physiol - Adv Physiol Educ. 2013; 37: 213-219https://doi.org/10.1152/advan.00053.2013